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Abstra
t

Blind linear system identi�
ation 
onsists in estimating the parameters of a linear time-

invariant system given its (possibly noisy) response to an unobserved input signal. Blind

system identi�
ation is a 
ru
ial problem in many appli
ations whi
h range from geophysi
s

to tele
ommuni
ations, either for its own sake or as a preliminary step towards blind de
on-

volution (ie. re
overy of the unknown input signal). This paper presents a survey of re
ent

sto
hasti
 algorithms, related to the Expe
tation-Maximixation (EM) prin
iple, that make it

possible to estimate the parameters of the unknown linear system in the maximum likelihood

sense. Emphasis is on the 
omputational aspe
ts rather than on the theoreti
al questions.

A large se
tion of the paper is devoted to numeri
al simulations te
hniques, adapted from

the Markov Chain Monte Carlo (MCMC) methodology, and their eÆ
ient appli
ation to the

noisy 
onvolution model under 
onsideration.

Keywords Blind system identi�
ation, Maximum likelihood estimation, Expe
tation Max-

imization (EM), Sto
hasti
 algorithms, Markov Chain Monte Carlo (MCMC)



1 Introdu
tion

Blind linear system identi�
ation 
onsists in estimating the parameters of a linear time-invariant

system given its (possibly noisy) response to an unobserved input signal. In many appli
ations,

the ultimate goal is indeed blind de
onvolution whi
h aims at re
overing the unobserved input

signal itself. Most blind de
onvolution approa
hes, however rely on the blind identi�
ation of

the �lter 
oeÆ
ients. These two problems have been the topi
 of a large number of 
ontributions

in the re
ent years (see Donoho [21℄ and [47℄ for early referen
es; Nikias and Mendel [51℄, Haykin

[30℄, Cadzow [6℄ and the referen
es therein for an updated a

ount). Many of these 
ontribu-

tions deal with higher-order 
umulants and polyspe
tral te
hniques, based on the pioneering


ontribution by Lii and Rosenblatt [33℄. This approa
h was later extended in a series of papers

by Giannakis and Mendel [27℄, Tugnait [65℄ (among many others).

In this paper, the fo
us is on the blind identi�
ation issue andmaximum likelihood estimation

of the model parameters (whi
h in
lude the �lter 
oeÆ
ients, and possibly some 
hara
teristi
s

of the noise and/or of the input signal) is 
onsidered. Contrary to 
umulant or polyspe
tral

te
hniques, maximum likelihood exploits all the available information on the probability dis-

tributions of the input and noise, whi
h improves the a

ura
y of the parameter estimates.

Maximum likelihood for noisy blind de
onvolution problems has been only s
ar
ely addressed

in the signal pro
essing literature, be
ause the likelihood fun
tion 
annot, in most 
ases, be

expressed in a numeri
ally tra
table analyti
 form. In this 
ontext, simulation-based numeri
al

optimization approa
hes provide a powerful alternative to their (more well-known) determinis-

ti
 
ounterparts, su
h as the Expe
tation Maximization (EM) algorithm. This paper is mainly


on
erned with algorithmi
 issues, and intends to provide some answers on how to implement

maximum likelihood in the blind de
onvolution / system identi�
ation 
ontext. Related theo-

reti
al aspe
ts su
h as 
onsisten
y, asymptoti
 normality, asymptoti
 information bound, will

thus be left aside.

The paper is organized as follows: In se
tion 2, the general blind identi�
ation problem is

des
ribed along with needed de�nitions and assumptions. Iterative sto
hasti
 algorithms for

obtaining maximum-likelihood parameter estimates are introdu
ed in se
tion 3. These te
h-

niques usually relies on a data-augmentation strategy whi
h requires 
onditional simulations of

the missing inputs. Simulation strategies that may be used for 
arrying out su
h a task are far

from being trivial and are dis
ussed in detail in se
tion 4. Finally, some simulation results are

presented in se
tion 5.

Remark

The question of knowing whether it is ne
essary to �rst identify the parameters of the model

before attempting the de
onvolution is an important and yet 
ontroversial methodologi
al issue.

The two-steps approa
h (identi�
ation of the �lter parameters followed by de
onvolution) is

the most popular approa
h and (presumably) the most su

essful to date [40℄, [13℄. In this

approa
h, the re
overy of the input sequen
e is usually 
arried out in a Bayesian framework

by maximizing the posterior distribution of the input sequen
e given the �lter parameters and

the observations, or some 
omputationally tra
table approximation of this 
riterion. The use

of a priori information in this 
ontext is of a prime importan
e sin
e the de
onvolution is in

general an ill-behaved problem (with more \degrees of freedom" than the available number of

observations) [47℄, [18℄. The deterministi
 approa
hes devised for joint model identi�
ation and

input re
overy (\generalized likelihood", \deterministi
 maximum-likelihood"), although quite

su

essful in the 
ase of Single Input Multiple Output (SIMO) systems [42℄, [31℄, do not appear

to be reliable for Single Input Single Output (SISO) systems [24℄. A re
ent alternative approa
h

for ta
kling this joint estimation problem 
onsist in performing a so-
alled \fully Bayesian"

simulation-based analysis (see, for instan
e, [23℄, [14℄, [15℄ and referen
es therein). This way of

pro
eeding is very di�erent in spirit sin
e it makes it possible to perform (at least 
on
eptually)
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various type of inferen
es, su
h as marginal estimation of the input sequen
e (where the �lter


oeÆ
ients are 
onsidered as a nuisan
e parameter and are marginalized out). In the rest of the

paper, we will not dis
uss any further the de
onvolution issue and we assume that the goal is

indeed maximum likelihood �lter identi�
ation.

2 Blind identi�
ation model

The estimation of non minimum phase system has re
eived a 
onsiderable attention in the past

de
ade. Most of the methods proposed to date are based on the higher-order statisti
s (the

third-order or the fourth-order 
umulants or the 
orresponding frequen
y-domain quantities,

e.g. the bispe
trum or the trispe
trum) of the output (see for example [52℄,[65℄ and the refer-

en
es therein). These methods are most often straightforward to implement but are far from

being optimal from a statisti
al point of view when an a priori information is available on the

distribution of the input signal. Examples of this situation may be found in geophysi
s or in

digital 
ommuni
ations appli
ations: In these 
ases, the distribution of the input signal is either

known or at least 
an be modeled a

urately. In these situations, important improvements in the

performan
e of the estimates 
an be expe
ted (and a
hieved in pra
ti
e) by taking into a

ount

this information in the estimation pro
edure. A natural way to exploit this information 
onsist

in solving the blind identi�
ation problem in the maximum likelihood sense.

As outlined above, maximum likelihood has only s
ar
ely be used for parameter estimation

in noisy de
onvolution problems, ex
ept when the input is dis
rete and belongs to a �nite

alphabet, a situation of interest in digital 
ommuni
ation (see [34℄,[2℄,[60℄ and the referen
es

therein). Extensions to more general input models have only marginally been addressed.

2.1 Blind identi�
ation as an in
omplete data problem

From a statisti
al point of view, blind identi�
ation is a typi
al example of a problem whi
h

involve unobserved data. Unobserved (also known as in
omplete, or missing) data models forms

a large and important 
lass whi
h has re
eived a 
onsiderable interest in the statisti
al literature

during re
ent years. Before going further, some notations and de�nitions are presented.

Let y , (y

1

; � � � ; y

T

)

0

denote the ve
tor of observed data samples. It is assumed that

y

t

=

p

X

l=0

h

l

z

t�l

+ �n

t

; (1)

where fz

t

g is the (unobserved) input sequen
e, h = (h

0

; � � � ; h

p

)

0

is the ve
tor of MA 
oeÆ
ients,

and fn

t

g is an (unobserved) additive noise. In this model, the input sequen
e z = (z

1�p

; � � � ; z

T

)

0

plays the role of the missing data and (y; z) is referred to as the 
omplete data. It is further

assumed that

� (M1) fz

t

g is an iid. sequen
e of random variables with known probability distribution

fun
tion (pdf) p(z

t

) (with respe
t to some dominating measure �

z

).

� (M2) fn

t

g is an iid. sequen
e of zero-mean Gaussian variables with unit varian
e.

� (M3) The pro
esses fz

t

g and fn

t

g are independent.

As is 
lear from above, we restri
t ourself to the 
ase of Single-Input Single-Output (SISO)

moving-average (MA) models. The extension to Multiple-Input Multiple-Output (MIMO) MA

models would be straightforward (ex
ept for added notational 
omplexity). A more 
hallenging

question 
on
erns the extension to, possibly non-
ausal, IIR �lters models. Another possible ex-

tension is the 
ase of non-Gaussian measurement noise fn

t

g: assumption (M2) 
ould be relaxed

so as to allow for mixture of Gaussian, Lapla
ian, or other exponential family of pdf. These two
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last points are dis
ussed in some more details in the 
on
lusion of the paper. Finally, assumption

(M1) 
ould be relaxed by assuming that the pdf p(z

t

) belongs to some known parametri
 family,

and depends upon an unknown �nite-dimensional parameter. The adaptations needed to han-

dle this 
ase are, at least 
on
eptually, straightforward but it raises some important questions

(identi�ability, asymptoti
 eÆ
ien
y) that are not 
onsidered here.

The parameters � of the model to be estimated in
ludes both the �lter 
oeÆ
ients h and the

noise varian
e �

2

. Under these assumptions, the log-likelihood 
orresponding to the 
omplete

data is, up to 
onstant terms,

log p(z;y;�) = �

T

2

log �

2

�

1

2�

2

T

X

t=1

(y

t

� h

0

z

t

)

2

; (2)

whi
h 
an be rewritten as

log p(z;y;�) = L(S

1

(z);S

2

(z);�) ; (3)

with

L(S

1

;S

2

;�) = �

T

2

log �

2

�

1

2�

2

 

T

X

t=1

y

2

t

� 2h

0

S

1

+ h

0

S

2

h

!

;

S

1

(z) =

T

X

t=1

y

t

z

t

;

S

2

(z) =

T

X

t=1

z

t

z

0

t

; (4)

where z

t

, (z

t

; � � � ; z

t�p

)

0

. S

1

(z) and S

2

(z) are the suÆ
ient statisti
s for the 
omplete-data

model (dependen
e of S

i

(z) on y is impli
it). Maximum Likelihood Estimates (MLE) of the

unknown parameters in the 
omplete data model are given by

^

h = S

2

(z)

�1

S

1

(z) ;

�̂

2

=

1

T

 

T

X

t=1

y

2

t

�

^

h

0

S

1

(z)

!

: (5)

Unfortunately, when the input data z is not observed, the a
tual likelihood 
orresponding to the

observed data only is obtained by marginalization of (2), that is by integrating over the values

of the unobserved input data sequen
e:

p(y;�) =

Z

1

�1

� � �

Z

+1

�1

p(y; z;�)

T

Y

t=1�p�1

p(z

t

)�

z

(dz

t

) : (6)

Be
ause of the multiple integration, (6) 
annot in general be evaluated in a tra
table analyti


form.

2.2 The EM paradigm

The EM algorithm 
an be seen as an iterative method for �nding the modes of the likelihood

fun
tion, whi
h is extremely useful for models where it is hard to maximize the likelihood dire
tly

but easy to work with the `
omplete' data model. The EM algorithm formalizes a relatively old

idea for handling missing data: Starting with a guess of the parameters, (1) repla
e the missing

values by their expe
tations given the guessed parameters, (2) estimate parameters assuming the

missing data are given by their estimated values, (3) reestimate the missing values assuming the
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new parameter estimates are 
orre
t, (4) reestimate parameters, and so forth, until 
onvergen
e.

In fa
t, the EM algorithm is more eÆ
ient than these four steps would suggest sin
e ea
h

missing data value is not estimated separately; instead those fun
tions of the missing data that

are needed to estimate the model parameters are estimated jointly.

The name \EM" 
omes from the two alternating steps: Computation of the expe
tation of the

needed fun
tions (or in other words, suÆ
ient statisti
s) of the missing values, and estimation

of the parameters by maximization using the expe
ted values of the suÆ
ient as if they had

been 
omputed from observed values of the missing data (see [19℄, [62℄, the histori
al review

of [32℄, as well as re
ent developments in [48℄). More pre
isely, denote �

(n�1)

the 
urrent �t of

the parameter before the nth iteration of the algorithm. At iteration n, the E-step amounts to


omputing

Q(�j�

(n�1)

) = E

�

log p(y; z;�)jy; �

(n�1)

�

: (7)

The M-step 
onsists in �nding the parameter �

(n)

that maximizes Q(�j�

(n�1)

) in the feasible

set �. For the 
onvolution model, it is easily seen from (3) and (4) that Q(�j�

(n�1)

) may be

written as

Q(�j�

(n�1)

) = L(

�

S

1

(�

(n�1)

);

�

S

2

(�

(n�1)

);�) ; (8)

where

�

S

1

(�) =

T

X

t=1

y

t

E(z

t

jy;�)

0

;

�

S

2

(�) =

T

X

t=1

E(z

t

z

0

t

jy;�) : (9)

The maximization step is thus 
arried out as in (5), repla
ing the 
omplete data suÆ
ient statis-

ti
s by their expe
ted values. The main diÆ
ulty with this s
heme is that dire
t 
omputation of

E(z

t

jy;�) and E(z

t

z

0

t

jy;�) is, for many sour
e signal models, intra
table. The only ex
eptions

to that rule are when (i) the sour
e is Gaussian - whi
h is of 
ourse only of marginal interest

in a blind identi�
ation 
ontext be
ause of the inherent limited identi�ability of the �lter - and

when (ii) sour
e is dis
rete. The later 
ase is of parti
ular interest in digital 
ommuni
ations

appli
ations. It has been addressed by many authors, after the pioneering 
ontribution of Kaleh

and Vallet [34℄ (see also [60℄ and [2℄). The spe
ial feature of the dis
rete (�nite) 
ase is that the

expe
tation of any fun
tion of the unobserved input signal z

t


an be evaluated from the proba-

bilities P (z

t

) = v

k

, where v

1

; � � � ; v

K

are the possible values of the input signal. More pre
isely,

the state ve
tor z

t

de�ned in the previous se
tion 
an take at most M = K

(p+1)

di�erent values

whi
h we denote by v

m

. Eq. (9) thus redu
es to

�

S

(n)

i

=

T

X

t=1

y

t

M

X

m=1

S

i

(v

m

)P (z

t

= v

m

jy;�

(n�1)

) for i = 1; 2 : (10)

Moreover, the posterior probabilities P (z

t

= v

m

jy;�

(n�1)

) that appear in (10), 
an be 
omputed

eÆ
iently using a two-pass algorithm introdu
ed by Baum and his 
olleagues in the early 1970s,

whi
h is known as the Forward-ba
kward pro
edure [55℄, [45℄. In all other situations, the EM

paradigm is not dire
tly exploitable, and need some adaptations.

3 EM-related sto
hasti
 algorithms

In this se
tion, several possible variations around the basi
 EM paradigm are presented. The

prin
iple of all these methods 
onsists in repla
ing the expli
it 
omputation of the expe
tations
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by some kind of sto
hasti
 integration pro
edure. These methods thus all requires sto
hasti


simulations of the missing data, or of some other auxiliary data. Appli
able simulation pro
e-

dures for the noisy 
onvolution model will be 
onsidered in se
tion 4.

A word of 
aution is needed here: For the sake of simpli
ity, all the algorithms presented

in this se
tion are des
ribed as if it was possible to perform exa
t independent simulations of

the required sto
hasti
 quantities. We shall however see in se
tion 4 that the diÆ
ulty of the

simulation task itself should not be overlooked. For the model under 
onsideration, we will


onsider Markov 
hain simulation te
hniques and show that the 
hoi
e of a parti
ular sampling

strategy 
an substantially a�e
t the 
onvergen
e behavior of the algorithms.

3.1 MCEM: Monte Carlo EM algorithm

Monte Carlo EM, as proposed by Wei and Tanner [66℄, [62℄, 
onsists in 
omputing approximately

the EM intermediate quantity de�ned by (9) by use of Monte Carlo integration. Basi
ally, the

nth E-step is repla
ed by the following pro
edure:

1. Multiple simulations: Draw M(n) values z

(n;i)

(i = 1; � � � ;M(n)) of the missing data

ve
tor under p(zjy;�

(n�1)

), the a posteriori distribution of the missing data given the

observations and the 
urrent estimate of the parameters.

2. Monte Carlo integration: Approximate Q(�j�

(n�1)

) with

^

Q(�j�

(n�1)

) =

1

M(n)

M(n)

X

i=1

log p

�

(y; z

(n;i)

) : (11)

(3) and (4) imply that

^

Q(�j�

(n�1)

) = L(

^

S

(n)

1

;

^

S

(n)

2

;�) where

^

S

(n)

j

=

1

M(n)

M(n)

X

i=1

S

1

(z

(n;i)

) for j = 1; 2 ; (12)

where S

1

(z) and S

2

(z) are de�ned in (4).

In 
ertain models, although it is not possible to 
ompute dire
tly E(S

i

(z)jy;�), it is feasible

to 
ompute E(S

i

(z)jy;q;�), where q are some auxiliary missing variables. If sampling from

p(qjy;�) is simpler or more eÆ
ient than sampling dire
tly from p(zjy;�), it may be advanta-

geous to adapt the MCEM s
heme presented above. Bayes formula implies that

E(S

i

(z)jy;�) =

Z

E(S

i

(z)jy;q;�)p(qjy;�)�

q

(dq) ; (13)

and the modi�ed s
heme goes as follows

1. Multiple simulations: Draw M(n) values q

(n;i)

(i = 1; � � � ;M(n)) of the auxiliary missing

data ve
tor under p(qjy;�

(n�1)

).

2. Monte Carlo integration: Approximate E(S

i

(z)jy;�) with

^

S

(n)

i

=

1

M(n)

M(n)

X

i=1

E(S

i

(z)jy; q

(n;i)

;�

(n�1)

) : (14)

Eq. (14) relies on the exa
t 
omputation of E(S

i

(z)jy; q;�) (whi
h has to be feasible). Su
h

s
hemes whi
h mix simulation and analyti
 integration (an operation whi
h is des
ribed as

\parametri
 Rao-Bla
kwellization" in [11℄) are often preferable be
ause they make the estimates

of the suÆ
ient statisti
s more reliable.

5



There are very few available results 
on
erning the 
onvergen
e of Monte Carlo EM. It is

important to note that unlike EM, Monte Carlo EM does not deterministi
ally in
reases the

a
tual likelihood of the parameters at ea
h iteration. This situation whi
h is 
hara
teristi


of sto
hasti
 optimization algorithms makes the 
onvergen
e analysis more 
omplex to study.

Under suitable te
hni
al 
onditions (see, e.g. [5, 44℄), MCEM may be shown to 
onverge with

probability 1 to a stationary point of the likelihood when M(n) ! 1 is in
reasing with the

iteration index n at a appropriate rate (typi
ally, M(n) = O(n

�

), with � > 0). In
reasing

the number of simulations at ea
h stage, de
reases the simulation varian
e of the Monte-Carlo

approximation of the 
onditional expe
tation and thus the simulation varian
e of the parameter

estimate. This is of 
ourse at the expense of the 
omputational eÆ
ien
y, and some pra
ti
al

trade-o� must be found.

3.2 Sto
hasti
 EM

The Sto
hasti
 EM (SEM) algorithm of Celeux and Diebolt [12℄, [20℄ tries to 
ir
umvent the

problems of MCEM by using only one single simulation of the unobserved data at ea
h iteration

(usingM(n) = 1). This is really an illustration of the \�lling-in" or imputation prin
iple sin
e at

ea
h step, a pseudo ve
tor of the 
omplete data is simulated using the information brought by the

observations y and the 
urrently available estimate of the parameters �

(n�1)

. With M(n) = 1,

there is no stabilizing me
hanism whi
h would ensure that the sequen
e of parameter estimates

f�

n

g does 
onverge (in some proper sense) to a deterministi
 value. Averaged estimates of the

form

^

�

(p)

=

1

n�m

0

n

X

p=n

0

�

(p)

; (15)

where m

0

is the length of the burn-in period during whi
h the output estimates are dis
arded

(so as to redu
e the in
uen
e of the initial 
ondition). Very few is known about the 
onvergen
e

of the SEM algorithm (see [32℄). It has been shown, for some spe
i�
 models [20℄ (e.g. mixture

of Gaussian pdfs), that

^

�

(n)

is a 
onsistent and asymptoti
ally normal estimate of the parameter

(but

^

�

(n)

does not ne
essarily 
onverge to a maximum likelihood estimate or a signi�
ant mode

of the likelihood fun
tion). Note that these results do not readily apply to the 
onvolution model


onsidered here, and the 
onvergen
e of

^

�

(n)

to a meaningful value still is an open question.

3.3 SAEM: Sto
hasti
 Approximation EM algorithm

The SAEM (for Sto
hasti
 Approximation EM) algorithm proposed by Lavielle et al. [41℄ uses

a sto
hasti
 approximation pro
edure in order to estimate the 
onditional expe
tation of the


omplete data log-likelihood. The basi
 idea is that rather than using a large number of simula-

tions at ea
h step, the expe
tation needed to perform the E-step of EM 
an be approximated by

a

umulation of the statisti
s 
omputed for all previous iterations, with some suitable forgetting

me
hanism. The nth E-step of SAEM 
onsists in:

� Simulation : Sample one realization z

(n)

of the missing data ve
tor under p(zjy;�

(n�1)

).

� Sto
hasti
 approximation : Update the 
urrent approximation of the EM intermediate

quantity a

ording to

^

Q

(n)

(�) =

^

Q

(n�1)

(�) + 


n

�

log p(y; z

(n)

;�)�

^

Q

(n�1)

(�)

�

; (16)

where (


j

) is a sequen
e of positive step-sizes.
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One of the interest of SAEM is that all the results obtained for sto
hasti
 approximation in a

general framework 
an be used. In parti
ular, an appropriate 
hoi
e of the sequen
e of step-sizes

guarantees almost-sure pointwise 
onvergen
e of the sequen
e of parameter estimates to a lo
al

maxima of the likelihood for a wide 
lass of probability models (see Lavielle [41℄ for te
hni
al

details).

The step-size 
ontrols the amount of sto
hasti
 ex
itation that is fed into the algorithm at

ea
h iteration. The step-sizes should not de
rease to rapidly in order to avoid the 
onvergen
e

towards spurious stationary points (e.g. saddle points or lo
al minima). On the other hand,


onvergen
e of the estimates will only o

ur when the step-size be
omes 
lose to zero. Typi
al


hoi
es are 


n

= (1=n)

�

, with 1=2 < � � 1 [38℄. All the te
hniques developed to speed up


onvergen
e of sto
hasti
 algorithms and to redu
e the varian
e of the estimates 
an be used,

su
h as Polyak's [54℄ averaging s
heme or Kesten's [35℄ pro
edure for 
omputing an optimal

sequen
e of step-sizes.

For blind de
onvolution models, (3) shows that updating

^

Q

(n�1)

(�) is equivalent to updating

the approximations of the 
onditional expe
tation of the suÆ
ient statisti
s de�ned in (4), so

that (16) redu
es to:

^

S

(n)

i

=

^

S

(n�1)

i

+ 


n

�

S

i

(z

(n)

)�

^

S

(n�1)

i

�

for i = 1; 2 : (17)

Computation of �

(n+1)


an then be 
arried out dire
tly using (5).

Note that as was the 
ase for the MCEM algorithm, the SAEM algorithm 
an also be adapted

to 
ases where it is more appropriate to sample from auxiliary missing variables. Then, instead

of (17) the updating of

^

S

(n)

i

is be 
arried out as follows

^

S

(n)

i

=

^

S

(n�1)

i

+ 


n

h

E(S

i

(z)jy;q

(n)

;�

(n�1)

)�

^

S

(n�1)

i

i

: (18)

4 Simulation te
hniques

The sto
hasti
 versions of the EM algorithm presented in the previous se
tion require simulation

of the missing input samples under p (z jy;� ). This simulation step is not straightforward to

implement as the input samples are not 
onditionally independent given the observed output

samples. In this se
tion, several possible methods for simulating the missing inputs are pre-

sented. In Subse
tion 4.1, a general Markov Chain Monte Carlo (MCMC) sampler is presented

to simulate under the posterior p(zjy;�). More eÆ
ient sampling strategies, �tted to the 
ase

where the input data pdf is a mixture of Gaussian, are presented in se
tion 4.3.

For notational 
onvenien
e, the dependen
e on the 
urrent value of the parameter � of all

the probability distribution fun
tions is omitted in this se
tion.

4.1 Basi
 Prin
iples

MCMC (Markov Chain Monte Carlo) is a 
lass of sto
hasti
 simulation methods designed for

sampling from multivariate distributions (generally of high-dimensionality). These methods

appeared in the statisti
al literature in the early 80's and are very useful in the �elds image pro-


essing and 
omputational statisti
s. MCMC te
hniques are well-do
umented in the literature

(see [4℄, [25℄, [28℄, [57℄, [61℄ and referen
es therein) and only a brief a

ount of these methods is

given here.

The idea is very simple. Suppose that we need to sample from a distribution f (x) where

x , (x

1

; � � � ; x

n

) 2 X � R

n

whi
h is known (perhaps up to multipli
ative 
onstant). f will

be referred to as the target distribution. If f is very 
omplex so that it is no dire
t sampling

method available, an indire
t method for obtaining samples from f 
onsists in 
onstru
ting a

Markov 
hain (aperiodi
 and irredu
ible), whose stationary (or invariant) distribution is f(x).

Then, if the 
hain is run for long enough, simulated values from the 
hain 
an be treated as

7



a dependent samples from the target distribution, and used as shown in the previous se
tion.

There are many important implementation issues asso
iated with MCMC methods, in
luding,

amongst others, the 
hoi
e of the 
hain's transition me
hanism, and te
hniques to 
ontrol the


onvergen
e to the limit distribution.

Gibbs Sampler

The Gibbs sampler was �rst introdu
ed for image restoration by Geman and Geman [26℄ and

Besag [3℄. An extensive a

ount of the Gibbs sampler may be found in the tutorials by Smith and

Roberts [61℄, Gelfand and Smith [25℄ and Besag et al [4℄. The Gibbs sampler pro
eeds by splitting

the state ve
tor into a number of 
omponents and updating ea
h in turn by a series of Gibbs

transitions. Suppose that the state ve
tor is split into q � n 
omponents

�

x

1

; � � � ; x

q

�

. Having

sele
ted 
omponent x

i

to be updated, the Gibbs transition kernel produ
es a new state ve
tor

x

0

= (x

1

; � � � ; x

i�1

; y; x

i+1

; x

q

) where y is sampled from f(x

i

jx

�i

), the 
onditional distribution

of x

i

, given the values of the other 
omponents x

�i

= [x

1

; � � � ; x

i�1

; x

i+1

; � � � ; x

q

℄, 1 � i � q.

Ideally, the 
onditional distribution f(x

i

jx

�i

) should be easy to sample form (ie. is a \standard"

distribution). However, in the 
ases where the 
onditional distribution is non-standard, there are

ways to sample from the appropriate 
onditionals (see next se
tion). The basi
 Gibbs sampler

uses a �xed sequen
e of Gibbs transition kernels, ea
h of whi
h updates a di�erent 
omponent

of the state ve
tor, as follows:

Algorithm 1 (Gibbs sampler)

1. Set an arbitrary starting value x

(0)

=

�

x

(0)

1

; � � � ; x

(0)

q

�

for the �rst iteration (k = 1).

2. At iteration index k,

� Sample x

(k)

1

from f

�

x

1

jx

(k)

�1

�

,

� Sample x

(k)

2

from f

�

x

2

jx

(k)

�2

�

,

� � � �

� Sample x

(i)

q

from f

�

x

(k)

q

�

�

�

x

(k)

�q

�

,

where x

(k)

�i

,

�

x

(k)

1

; � � � ; x

(k)

i�1

; x

(k�1)

i+1

; � � � ; x

(k�1)

q

�

.

Iteration of the full 
y
le of random variate generations from ea
h of the full 
ondition-

als, produ
es a sequen
e whi
h is a realization of a Markov 
hain with stationary distribution

f(x) (under 
onditions that are dis
ussed in [63℄, [57℄). This sampling algorithm, where ea
h


omponent is updated in turn, is sometimes referred to as the systemati
 sweep Gibbs sampler.

However, the Gibbs transition kernel need not be used in this systemati
 manner, and many

other implementations are possible, su
h as the random sweep Gibbs sampler, whi
h randomly

sele
ts a 
omponent to be updated at ea
h iteration, and thus uses a mixture (rather than a


y
le) of Gibbs updates.

Metropolis-Hasting algorithm

The Metropolis-Hasting algorithm is an alternative and more general updating s
heme, where

values are drawn from an arbitrary (yet sensibly 
hosen) distributions and are a

epted or reje
ted

in su
h a way that, asymptoti
ally, they behave as dependent random observations from the

target distribution. This method is a form of generalized reje
tion sampling approa
h and is

widely appli
able [28℄, [57℄.
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The Metropolis Hasting update pro
eeds as follows. Suppose we wish to update x, �rst a


andidate observation y is sampled form an arbitrary pdf q(x; y) that depends on the 
urrent

state of the 
hain x. The 
hoi
e of q is essentially arbitrary (subje
t to the 
ondition that the

resulting Markov 
hain is aperiodi
 is irredu
ible): It is generally sele
ted so that sampling from

this (proposal) distribution is easy. The 
andidate y is a

epted with probability

�(x; y) = min

�

1;

f(y) q(y; x)

f(x) q(x; y)

�

: (19)

In the 
ase where the 
andidate is reje
ted, the 
hain remains in its 
urrent state x. Note that

f only enters through � and the ratio f(y)=f(x), so that the knowledge of the distribution only

up to a multipli
ative 
onstant is suÆ
ient for implementation. There are an in�nite range of


hoi
es for q, see Tierney [63℄ and Chib and Greenberg [16℄. The most often used proposal are

Random Walk Metropolis If q(x; y) = �(y�x) for some arbitrary density �, then the kernel

driving the 
hain is a random walk. There are many 
ommon 
hoi
es for � in
luding

the uniform distribution on an hypersphere, a multivariate normal, or an over-dispersed

multivariate student t-distribution.

The independent sampler If q(x; y) = �(y), then the 
andidate observation is drawn inde-

pendently of the 
urrent state of the 
hain. In this 
ase, the a

eptan
e probability 
an

be written as,

�(x; y) = min(1; w(y)=w(x)) ;

where the ratio w(x) = f(x)=�(x) is known as the importan
e weight fun
tion [62℄.

Data augmentation sampling

In 
ertain 
ases, it is more appropriate to sample not dire
tly from f(x) but from an augmented

pdf g(x; v) su
h that f(x) is the marginal distribution of g(x; v) with respe
t to v. This is

typi
ally the 
ase when sampling from the f alone is not so easy. This approa
h, known as data

augmentation was introdu
ed in the statisti
al literature by Tanner and Wong [62℄.

An example of a `Gibbs-style' data augmentation sampler is given below, where the aug-

mented state-ve
tor is split in two blo
ks x and v.

Algorithm 2 (Data augmentation sampler)

1. Set an arbitrary starting value v

(0)

2. At iteration index k, sample

� x

(k)

from p(xjv

(k�1)

),

� and v

(k)

from p(vjx

(k)

),

where p(xjv) (resp. p(vjx)) denotes the 
onditional distribution of x given v (resp. v given

x), derived from g.

Sampling the two sub-
omponents x and v in blo
k, rather than element by element as in the

basi
 Gibbs paradigm, is usually preferable (if it is feasible) be
ause it redu
es the 
orrelation

between subsequent outputs of the Markov simulation 
hain [8℄, [43℄, [58℄.
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4.2 A general-purpose sampler for blind de
onvolution

In the appli
ation under 
onsideration, it is required to sample from p(zjy). A �rst, and per-

haps not optimal, pro
edure pro
eeds by dividing the data ve
tor z into its s
alar 
omponents

z

1�p

; � � � ; z

T

.

Gibbs Sampler

To implement a systemati
 sweep Gibbs sampler, we need to evaluate full 
onditional distribu-

tion. Under the assumptions stated above, the full 
onditional may be expressed as

p(z

t

jy

1:T

; z

1�p:t�1

; z

t+1:T

) / p(y

1:T

jz

1:T

)p(z

t

) (20)

/

min(t+p;T )

Y

i=max(t;1)

p(y

i

jz

i

)p(z

t

): (21)

where / means \proportional to" and y

1:T

, (y

1

; � � � ; y

T

)

0

, z

1�p:t

, (z

1�p

; � � � ; z

t

, z

1:T

,

(z

1

; � � � ;z

T

)

0

, et
. Most often, the full-
onditional distribution does not belong to a standard

distribution family for whi
h eÆ
ient sampling algorithms are readily available. One important

ex
eption o

urs when the pdf of z

t

is a mixture of Gaussian be
ause the full 
onditional still

is a mixture of Gaussian in this 
ase. We shall see however in se
tion 4.3 that there are more

eÆ
ient sampling s
heme for handling this parti
ular 
ase. In other situations, one need to

resort to an hybrid strategy, mixing the Gibbs sampler and a Metropolis-Hasting pro
edure.

Single-
omponent independent sampler

The Metropolis-Hasting within Gibbs algorithm (also known as a one-at-a-time Metropolis-

Hastings s
heme) 
onsists in updating ea
h individual 
omponent in turn, via a single Metropolis-

Hasting update until all 
omponents have been visited. This solution is equivalent to the

so-
alled hybrid Gibbs sampler, suggested by Muller [50℄. The most straightforward solution


onsists in running an independent sampler using the prior distribution of z

t

as the proposal

distribution. The pro
edure for updating the t-th 
omponent z

t

, 1� P � t � T , goes as follow

Algorithm 3 (Single-
omponent independent sampler)

� Sample ~z

i

from the prior distribution p(z).

� A

ept ~z

i

with probability

�(z

i

; ~z

i

) = min

 

1; exp

"

�(2�

2

)

�1

i

max

X

i=i

min

(y

i

� h

0

~
z

t

)

2

� (y

i

� h

0

z

t

)

2

#!

;

where i

min

= max(t; 1), i

max

= min(t+ p; T ) and
~
z

i

= [z

i

; � � � ; z

t+1

; ~z

t

; z

t�1

; � � � ; z

i�p

℄

0

, for

i

min

� i � i

max

.

Compared to a random walk Metropolis-Hasting pro
edure, the independen
e sampler de-

s
ribed above has the advantage that it doesn't ne
essitate any tuning of the proposal distri-

bution. On the other hand, the independen
e sampler 
an only be used when simulation from

p(z) is feasible, and it may lead to high reje
tion ratios for 
ertain distributions.

In pra
ti
e, only a few iterations (or more pre
isely a few 
omplete 
y
les) of the sampling

pro
edure are performed to obtain the simulation needed at ea
h SEM, MCEM or SAEM step.

This is de�nitely not enough to guarantee 
onvergen
e of the sampler to its limiting target

distribution, but it proves in pra
ti
e to be enough to ensure proper 
onvergen
e of the estimates.
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4.3 Sampling s
hemes for Gaussian mixtures

The mixture of Gaussian model deserves spe
ial attention; this model has been used extensively

in geophysi
s for seismi
 tra
e inversion (see Mendel [47℄). It is also frequently used to model

sour
es with impulsive behavior, like neutroni
 sour
es (see Dou
et et al [23℄ for appli
ations).

One parti
ular 
ase of interest, is the Bernoulli-Gaussian distribution whi
h is a two 
omponents

mixture of Gaussian with zero means and largely di�erent varian
es [13℄, [40℄, [15℄. A slightly

di�erent perspe
tive 
onsists in using mixture models in a semi-parametri
 
ontext, where the

distribution of the input data is not pre
isely known. The motivation for using mixtures here is

that any `smooth' probability distribution fun
tion p(z

t

) may be approximated by a mixture of

Gaussian, provided that the number of 
omponents is large enough. Thus when K is suÆ
iently

large, it 
an be expe
ted that the estimate of the �lter 
oeÆ
ients are \
lose to optimal" for

a large 
lass of input distributions p(z

t

) [49℄. There are several theoreti
al as well as pra
ti
al

issues in that dire
tion, that still need be answered.

A Gaussian mixture model has the form [64℄, [56℄

p(z) =

K

X

k=1

�

k

�(z;�

k

; �

2

k

); (22)

where �

k

are the statisti
al weights of the 
omponents of the mixture, and �(�;�

k

; �

k

) is the

Gaussian probability density with mean �

k

and varian
e �

2

k

. It is often enlightening to 
onsider

that the observations in a mixture models are in
omplete sin
e (22) 
orresponds to the following

data-generation me
hanism

z

t

jq

t

� �(z

t

;�

q

t

; �

2

q

t

); (23)

where q

t

is an unobservable random variable taking its value in the set f1; � � � ;Kg, with prob-

ability distribution P (q

t

= k) = �

k

(1 � k � K). The variables q

t

are often referred to as the

labels or the 
ategories, or more formally as the mixture 
omponent indi
ators (see Titterington

et al. [64℄ for a 
omplete a

ount of mixture models).

It is worthwhile to note that, 
onditionally to q

1�p:T

= [q

1�p

; � � � ; q

T

℄

0

and y

1:T

= [y

1

; � � � ; y

T

℄

0

,

the random ve
tor z

1�p:T

= [z

1�p

; � � � ; z

T

℄

0

is Gaussian. It is shown below that it is possible

to sample dire
tly in blo
k from p(z

1�p:T

jq

1�p:T

; y

1:T

), using a re
ursive algorithm derived from

the Kalman �lter and smoother. Next, it is easily seen that

p(q

1�p:T

jz

1�p:T

; y

1:T

) =

T

Y

t=1�p

p(q

t

jz

t

) ; (24)

where p(q

t

jz

t

) is a (dis
rete) multinomial distribution and

p(q

t

= kjz

t

) =

�

k

�(z

t

;�

k

; �

2

k

)

P

K

j=1

�

j

�(z

t

;�

j

; �

2

j

)

: (25)

It is thus straightforward to sample in blo
k from the 
onditional distribution of q

1�p:T

given

z

1�p:T

; y

1:T

. This suggests to use the data augmentation sampler introdu
ed in the previous

se
tion. Two alternative methods to sample from p(z

1:T

jy

1:T

; q

1�p:T

) are given below. The �rst,

proposed by Carter and Kohn [8℄, is straightforward to implement. A somewhat more involved

s
heme with better numeri
al eÆ
ien
y is des
ribed next.

Method I: State sampler

The sampling pro
edure developed below is based on the following observation: Conditional to

y

1:T

and q

1�p:T

, z

1:T

is an inhomogeneous Markov 
hain, in the sense that :

p(z

1:T

jy

1:T

; q

1�p:T

) = p(z

T

jy

1:T

; q

1�p:T

)

T�1

Y

t=1

p(z

t

jy

1:t

;z

t+1

; q

1�p:T

) : (26)
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Eq. (26) suggests the following strategy to sample from p(z

1:T

jy

1:T

; q

1�p:T

): (1) First, sample

from the 
onditional distribution of the last state ve
tor p(z

T

jy

1:T

; q

1�p:T

), (2) sample ba
kward-

in-time (for t = T � 1; :::; 1), from p(z

t

jy

1:t

;z

t+1

; q

1�p:T

). This strategy requires sampling from

p(z

t

jy

1:t

;z

t+1

; q

1�p:T

), whi
h is feasible be
ause [z

t

; y

1:t

;z

t+1

℄ is a Gaussian ve
tor 
onditionally

to q

1�p:T

. All we need to 
ompute is thus the 
onditional mean and varian
e of z

t

given y

1:t

,

z

t+1

and q

1�p:T

. For that purpose, a Kalman �lter is used.

A few additional notations are in order. First, it is 
onvenient to 
onsider the observation

model in state-spa
e form

y

t

= h

0

z

t

+ �n

t

; (27)

z

t+1

= Sz

t

+ (m

t

+ r

t

u

t

)e ; (28)

where S is the down-shift matrix and e , (1; 0; � � � ; 0)

0

. fu

t

g

t��p

and fn

t

g

t�1

are independent

sequen
es of i.i.d. Gaussian standardized random variables. The attention of the reader is

drawn on the fa
t that the 
onvention used above requires that m

t

, �

q

t+1

and r

t

, �

q

t+1

.

Despite the minor disagreement of this index shift, the 
onvention used in (28) is prefered sin
e

it 
orresponds to standard state-spa
e form of a dynami
 linear systems [7℄.

The simulation pro
edure pro
eeds in two pass: A forward pass, where the quantities of

interest are 
omputed using the Kalman �lter re
ursions; A ba
kward pass, where sampling is

performed from a normal distribution with parameters determined from the quantities 
omputed

in the forward pass. Denote:

�

t

= y

t

� y

tjt�1

innovation pro
ess

d

t

= E(�

2

t

) varian
e of the innovation pro
ess

z

tjt�1

one-step ahead state predi
tor

z

tjt

�ltered state estimate

(29)

Here the notation y

tjv

and (resp. z

tjv

) denote the orthogonal proje
tion (in the Hilbert spa
e of

square integrable random variables) of y

t

(resp. z

t

) onto the 
losed linear span of f1; y

1

; � � � ; y

v

g.

Let:

�

tjt�1

= E

h

(z

t

� z

tjt�1

)(z

t

� z

tjt�1

)

0

i

and �

tjt

= E

h

(z

t

� z

tjt

)(z

t

� z

tjt

)

0

i

;

denote the one step-ahead state predi
tion and the state �lter 
ovarian
e matri
es, respe
tively.

Algorithm 4 (Kalman �lter) Initialize the re
ursion with z

1j0

= [m

0

;m

�1

; � � � ;m

�p

℄

0

and

�

1j0

= diag[r

2

0

; r

2

�1

; � � � ; r

2

�p

℄, and 
ompute, for 1 � t � T ,

�

t

= y

t

� h

0

z

tjt�1

innovation update

d

t

= h

0

�

tjt�1

h+ �

2

varian
e of the innovation

k

t

= d

�1

t

�

tjt�1

h Kalman gain update

z

tjt

= z

tjt�1

+ k

t

�

t

state �ltering equation

�

tjt

= �

tjt�1

� d

t

k

t

k

0

t


ovarian
e of the �ltering error

z

t+1jt

= Sz

tjt

+m

t

e state predi
tor update

�

t+1jt

= S�

tjt

S

0

+ r

2

t

ee

0


ovarian
e of the predi
tion error

(30)

When running the Kalman �lter, the quantities z

tjt

, �

tjt

, z

t+1jt

and �

t+1jt

should be stored

(note that the 
omputation of z

tjt

and �

tjt

during the forward pass 
an be skipped: In pra
tise,

it may be more 
onvenient to store only z

t+1jt

, �

t+1jt

, k

t

and d

t

and to perform the needed


omputations during the ba
kward pass). The ba
kward simulation pro
eeds as follow:

1. Simulate z

T

under a multivariate normal distribution with mean z

T jT

and 
ovarian
e �

T jT

.
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2. For t = T �1; � � � ; 1, sample z

t�p

from a s
alar Gaussian distribution with mean ~m

t�p

and

varian
e ~r

t�p

given by

~m

t�p

= j

0

�

z

tjt

+ �

tjt

S

0

�

�1

t+1jt

�

z

t+1

� z

t+1jt

��

;

~r

t�p

= j

0

�

�

tjt

� �

tjt

S

0

�

�1

t+1jt

S�

tjt

�

j ; (31)

where the ve
tor j , (0; 0; � � � ; 1)

0

sele
ts the last 
omponent.

This simulation te
hnique whi
h 
orrespond to the straightforward appli
ation of (26) requires

the inversion of a (p+1)�(p+1) matrix at ea
h iteration step, whi
h 
an be
ome 
omputationally

involved when the �lter order p is large.

Method II: Disturban
e sampler

For the de
onvolution model, the fa
t that the dimension of the disturban
e noise u

t

is mu
h less

than that of the state ve
tor z

t

makes it possible to derive an equivalent simulation algorithm

with a redu
ed 
omplexity. The disturban
e sampler introdu
ed by De Jong and Shephard [17℄

samples dire
tly a realization of the disturban
e noise sequen
e u

1:T�1

, whi
h together with

a simulation of the initial state z

1


an be used to obtain the 
omplete sequen
e z

1:T

. This

algorithm is based on a ba
kward Gram-S
hmidt orthogonalization and on previous results on

the so-
alled disturban
e smoother established independently by Mendel [46℄ and Koopman [37℄.

Algorithm 5 (Disturban
e sampler)

1. Kalman �lter (Forward �ltering): Run the Kalman �lter as indi
ated by (30), and store �

t

, d

t

and L

t

, S(I� k

t

h

0

), where I denotes the (p+ 1)� (p+ 1) identity matrix.

2. Ba
kward sampling: For t = T � 1; � � � ; 1 
ompute

U

t

=

�

d

�1

T

hh

0

for t = T � 1

�

d

�1

t+1

hh

0

+ 


�1

t+1

v

t+1

v

0

t+1

+ L

0

t+1

U

t+1

L

t+1

�

if t � T � 2

(32)

p

t

=

�

d

�1

T

�

T

h for t = T � 1

�

d

�1

t+1

�

t+1

h� 


�1

t+1

~�

t+1

v

t+1

+ L

0

t+1

p

t+1

�

if t � T � 2

(33)

v

t

= r

t

L

0

t

U

t

e ; (34)

and




t

= 1� r

2

t

e

0

U

t

e : (35)

Simulate ~�

t

from �(�; r

t

e

0

p

t

; 


t

) and 
ompute

~z

t+1

= m

t

+ r

t

~�

t

:

3. Initial state: Compute

U

0

=

�

d

�1

1

hh

0

+ 


�1

1

v

1

v

0

1

+ L

0

1

U

1

L

1

�

; (36)

p

0

=

�

d

�1

1

�

1

h� 


�1

1

~�

1

v

1

+ L

0

1

p

1

�

; (37)
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and set

m

0

= (m

0

;m

�1

; � � � ;m

�p

)

0

R

0

= diag(r

2

0

; r

2

�1

; � � � ; r

2

�p

) : (38)

Simulate
~
z

1

(in one blo
k) from

� (�; m

0

+R

0

p

0

; R

0

�R

0

U

0

R

0

) :

The basi
 prin
iple of the above disturban
e sampler 
onsists in performing a re
ursive ba
kward

Gram-S
hmidt orthogonalization of the disturban
e noise sequen
e u

t

; 1 � t � T � 1 [17℄. Thus,

rather than trying to 
ompute dire
tly the mean and varian
e of u

t


onditional to u

t+1:T�1

; y

1:T

,

one 
onsiders the orthonormal sequen
e de�ned as �

t

= u

t

� u

tjH

t+1

, where H

t+1

is the 
losed

linear span of u

t+1:T�1

; y

1:T

(whi
h 
oin
ides, by 
onstru
tion, with that of �

t+1:T

; �

t+1:T�1

).

4.4 Sampling only the mixture indi
ators

As indi
ated at the end of se
tion 3.1, it may be advantageous to sample from an auxiliary set of

dummy variables rather than from the missing data ve
tor z

1�p:T

itself. In the 
ase of Gaussian

mixture, there are eviden
e that MCMC algorithms that samples the indi
ator variables q

1�p:T

without sampling the missing data z

1�p:T

are more eÆ
ient (faster 
onverging and mixing of the


hain) than the data augmentation s
hemes des
ribed above [9℄.

For the moving average 
onvolution model 
onsidered in this paper, it is extremely simple to

derive a single site Gibbs sampling for simulating the mixture indi
ator variables q

t

, 1 � t � T .

Eq. (20) implies that the 
onditional distribution p(q

t

jy

1:T

; q

1�p:t�1

; q

t+1:T

) may be expressed as

p(q

t

jy

1:T

; q

1�p:t�1

; q

t+1:T

) / p (y

1:T

j q

1�p:T

) p (q

1�p:T

)

/ p

�

y

max(t;1):min(t+p;T )

�

�

q

max(t�p;1�p):min(t+p;T )

�

p (q

t

) : (39)

In the following, we shall assume that 1 � t � T�p for the sake of brevity (the modi�
ations

needed to handle the 
ase of boundaries are straightforward and omitted here). First note that,

given q

t�p:t+p

, z

t�p:t+p

is 
onditionally Gaussian with mean ve
tor and 
ovarian
e matrix

�

t

= (�

q

t�p

; � � � �

q

t+p

)

0

�

t

= diag(�

2

q

t�p

; � � � �

2

q

t+p

) : (40)

Then using (27), it is easy to see that

y

t:t+p

= T (h) z

t�p:t+p

+ �n

t:t+p

;

where T (h) is the (p+ 1)� (2p+ 1) Sylvester matrix de�ned as

T (h) ,

0

B

B

B

�

h

0

h

1

� � � h

p

0 � � � � � � 0

0 h

0

h

1

� � � h

p

0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � � � � 0 h

0

h

1

� � � h

p

1

C

C

C

A

; (41)

and n

t:t+p

= [n

t

; � � � ; n

t+p

℄

0

. Under the stated assumptions, n

t:t+p

is a (p + 1) � 1 standard

normal ve
tor, whi
h implies that

p(q

t

jy

1:T

; q

1�p:t�1

; q

t+1:T

) / �

q

t

�

�

y

t:t+p

; T (h)�

t

;T (h)�

t

T (h)

0

+ �

2

I

�

; (42)

where I is the (p+1)� (p+1) identity matrix. Eq. (42) has to be evaluated for the K possible

values of q

t

, q

t

= 1; � � � ;K yielding the a
tual 
onditional probabilities after re-normalization.

The above pro
edure is a mu
h simpli�ed version of the algorithm des
ribed in [9℄ for arbitrary


onditionally Gaussian state-spa
e models.
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To 
omplete the expe
tation step (see eqs. (14) and (18)), it is ne
essary to evaluate the

following quantities

E(z

t

jy

1:T

; q

1�p:T

) and E(z

t

z

0

t

jy

1:T

; q

1�p:T

) for 1 � t � T :

Sin
e the 
onditional distribution of z

1:T

given y

1:T

and q

1�p:T

is Gaussian, these quantities

may be eÆ
iently 
omputed using a disturban
e smoother whi
h many similarities with the

disturban
e sampler des
ribed in se
tion 4.3.

Algorithm 6 (Disturban
e smoother)

1. Kalman �lter (Forward �ltering): Run the Kalman �lter as indi
ated by (30), and store �

t

, d

t

,

�

t+1jt

and L

t

= S(I� k

t

h

0

).

2. Ba
kward smoothing: For t = T � 1; � � � ; 1 
ompute

U

t

=

�

d

�1

T

hh

0

for t = T � 1

�

d

�1

t+1

hh

0

+ L

0

t+1

U

t+1

L

t+1

�

if t � T � 2

(43)

p

t

=

�

d

�1

T

�

T

h for t = T � 1

�

d

�1

t+1

�

t+1

h+ L

0

t+1

p

t+1

�

if t � T � 2

(44)

Store

E [z

t+1

jy

1:T

; q

1�p:T

℄ = m

t

+ r

2

t

e

0

p

t

; (45)

and

E

��

z

t+1

�E[z

t+1

jy

1:T

; q

1�p:T

℄

�

(z

t+1

�E[z

t+1

jy

1:T

; q

1�p:T

℄)

�

=

r

2

t

�

(1� r

2

t

e

0

U

t

e)e� S�

tjt�1

L

0

t

U

t

e

�

: (46)

3. Initial state: Compute

U

0

=

�

d

�1

1

hh

0

+ L

0

1

U

1

L

1

�

; (47)

p

0

=

�

d

�1

1

�

1

h+ L

0

1

p

1

�

; (48)

and 
ompute

E [z

1

jy

1:T

; q

1�p:T

℄ =m

0

+R

0

p

0

; (49)

E

�

(z

1

�E[z

1

jy

1:T

; q

1�p:T

℄) (z

1

�E[z

1

jy

1:T

; q

1�p:T

℄)

0

�

= R

0

�R

0

U

0

R

0

; (50)

where m

0

and U

0

are de�ned as in (38).

Equations (45) and (49) dire
tly yield the a posteriori mean of the unobserved input signal,

whereas (46) and (50) 
an be used to obtain re
ursively the a posteriori 
ovarian
e of ea
h state

ve
tor Covfz

t

� E[z

t

jy

1:T

; q

1�p:T

℄g noting that for a MA system it is indeed only ne
essary to


ompute the �rst line or �rst 
olumn when Covfz

t�1

�E[z

t�1

jy

1:T

; q

1�p:T

℄g is already known.
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5 Simulation results

In this se
tion, some numeri
al results and 
omparisons are provided to illustrate the behavior

of the estimation methods as well as the in
uen
e of the 
hoi
e of a parti
ular simulation

strategy. Only the SAEM method (see se
tion 3.3) will be 
onsidered here sin
e most 
on
lusive


onvergen
e results obtained to date pertain to this method.

5.1 Finite-valued input

We begin with a very simple model, for whi
h exa
t independent sampling is feasible, in order to

illustrate the role of the step-size 
ontrol strategy in the SAEM te
hnique. Let's assume that the

input signal z

t

is iid. and takes values plus or minus one with probability 1=2, the order p of the

�lter is set to one and the unknown parameters in
lude both the two 
oeÆ
ients of the �lter and

the Gaussian noise varian
e �

2

. This �nite-valued input model is of mu
h interest in the domain

of digital 
ommuni
ation and, as dis
ussed in se
tion 2.2, it is the only blind 
onvolution model

for whi
h the EM algorithm 
an be dire
tly applied using the forward-ba
kward re
ursions.

Conditional simulation of the input symbol sequen
e given the observations and the model

parameters 
an also be 
arried out from the quantities 
omputed during the forward-ba
kward

re
ursions [8℄, [22℄.

Fig. 1 displays the log-likelihood surfa
e (optimized with respe
t to the noise varian
e �

2

for ea
h 
ombination of the two �lter 
oeÆ
ients). It is striking to see that even for su
h a

simplisti
 
ase, the log-likelihood surfa
e is already quite 
omplex with a lo
al maximum (point

labeled LOC) distin
t from the a
tual maximum of the likelihood (indi
ated by the MLE label).

The sequen
e of dots visible on the surfa
e represent the position of the �rst 50 iterates of a

SAEM sequen
e with what seems to be the most appropriate tuning of the step-size de
ay for

this parti
ular model (see Fig. 2). Of 
ourse, sin
e the algorithm is sto
hasti
, the sequen
e

of estimates depends not only on the initial guess of the parameters (there are positions from

whi
h the algorithm will eventually 
onverge to the LOC point) but also on the parti
ular run

of the algorithm.

Fig. 2 illustrates the importan
e of the step-size de
ay s
heme for a proper 
onvergen
e of

the SAEM algorithm. Note that for ea
h setting of the step-size de
ay, �ve di�erent runs of

the algorithm are displayed in order to give an idea of the randomness of the sequen
es. Fig.

2 (a) and (b) 
orresponds to the two limit 
ases for whi
h 
onvergen
e of SAEM to a lo
al

maxima of the likelihood is guaranteed [41℄: Fig. 2-(a) 
orresponds to a fast de
ay with very

smooth sample paths, while Fig. 2-(b) display results obtained with a slow de
ay for whi
h the

sample paths are rougher and more variable from run to run. With a slow step-size de
ay, the

algorithm 
onverges mu
h more qui
kly to the region of interest around the mode (in 10 to 20

iterations), but the stabilization of the estimates will take mu
h longer than when using a fast

de
ay. It is possible to improve over this behavior simply by starting to average the estimates

at some point (see [54℄, [38℄ for a full a

ount of the merits of averaging) as in Fig. 2-(
), where

the estimates obtained after the tenth iteration are averaged. It is important to note that for

optimal 
onvergen
e behavior, the averaging should be performed afterwards and that in no way

should the averaged estimates be used while running the SAEM. Finally, Fig. 2-(d) shows that

in most 
ases it is very useful to allow for a burn-in period during whi
h the step-size is set to

1 (as if running the SEM algorithm) so as to lo
ate more rapidly the region of interest.

5.2 Impulsive input

We now 
onsider a 
ase whi
h genuinely requires sophisti
ated methods su
h as the ones 
onsid-

ered in this paper. This model, whi
h is 
ommonly used for the de
onvolution of seismi
 tra
es

measurements [47℄, [13℄, [39℄, assumes that the input signal is distributed as a mixture of two
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Figure 1: Pro�le log-likelihood max

�

2 log p(y;h; �

2

) for a sequen
e of T = 150 observations

(6 dB SNR). The dots 
orresponds to a sequen
e of SAEM estimates using the weight de
ay

s
heme of Fig. 2-(d). The point labeled LOC is a lo
al maxima of the likelihood.
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Figure 2: Relative deviation to the MLE (in L

2

norm) on a log-s
ale for �ve SAEM sample

paths for di�erent step-size de
ay s
hemes: (a) 


n

= n

�1

; (b) 


n

= n

�1=2+�

; (
) 


n

= n

�1=2+�

,

with averaging after the tenth iteration; (d) 


n

= n

�1=2+�

with averaging for n > 10, and a

burn-in period of 10 iterations (with 


n

= 1 for n � 10).
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Figure 3: A
tual 
onvolution �lter (
ir
les) with initial guess (stars). The dotted line features

the 
ontinuous-time wavelet.
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Figure 4: Input sequen
e and noise 
orrupted �lter output (5 dB SNR).

18



Gaussian distributions

z

t

� ��(0; �

2

1

) + (1� �)�(0; �

2

2

);

where �

2

� �

1

, and � is 
lose to 1. Although simple, this Bernouilli-Gaussian model provides

a realisti
 
hara
terization of impulsive input sequen
es. We use a syntheti
 data set whose

parameters are taken from the analysis of a
tual seismi
 data: � = 0:9, �

2

1

= 0:02, �

2

2

= 5,

T = 200 (data size), p = 8 (�lter order), Signal-to-Noise Ratio (SNR) 5 dB (white Gaussian

noise). The �lter used for the simulation is displayed on �gure 3 (points indi
ated by 
ir
les),

while the dotted line indi
ates the 
ontinuous time \wavelet" (see [47℄ for details 
on
erning the

geophysi
al appli
ation) from whi
h it is sampled. Fig. 4 shows the input signal together with

the observed signal (their time origins slightly di�er sin
e the input signal is extended to in
lude

the initial state z

1

). The parameters to be estimated in
lude both the ve
tor of �lter 
oeÆ
ients

h and the observation noise varian
e �

2

. The estimation problem is quite 
ompli
ated both

be
ause of the low SNR and of the form of the 
onvolution �lter itself (non minimum-phase

system, with only two zeros 
lose to the unit 
ir
le).

Considering the multimodal aspe
t of the likelihood observed for the mu
h simpler 
ase of

Fig. 1, it 
an be expe
ted that the estimation will be sensitive to the 
hoi
e of the initial guess

of the parameters. It turns out that the key point is to start from a reliable estimate of the

overall delay introdu
ed by the �lter, otherwise the pro
edure 
onverge to time-shifted versions

of the 
orre
t �lter

1

. To allow for more meaningful 
omparisons, we will thus only dis
uss the

results obtained with the initialization displayed on �gure 3 (
oeÆ
ients indi
ated by stars)

whi
h 
orrespond to a simple 3 taps delay.

Compared to the example 
onsidered in the previous se
tion (�nite-valued input), there is

a very signi�
ant 
on
eptual di�eren
e: For the example under 
onsideration, it is no longer

possible to obtain exa
t independent simulations distributed under the 
onditional distribution

p(z

1:T

jy

1:T

;h; �

2

). It is thus ne
essary to use the Markov 
hain sampling te
hniques des
ribed in

se
tion 4. It would of 
ourse be very ineÆ
ient to re-initialize theses simulations 
hains and run

them for a large number of iterations (so as to obtain independent and approximately distributed

samples) in between ea
h SAEM iteration. In pra
tise, only a few 
y
les of the Markov 
hain

simulation sampler are run at ea
h SAEM iteration and the 
hains are not reinitialized but are

rather re-started from their 
urrent value. Although very eÆ
ient in pra
tise, this 
ombination

of SAEM and Markov 
hain simulation still needs to be evaluated theoreti
ally sin
e 
urrently

available results 
on
ern the 
ase of exa
t independent sampling [41℄. For the model under


onsideration, the use of 3 
omplete simulation 
y
les (ie. 3 
onse
utive simulations of the


omplete missing data ve
tor) per SAEM iteration seems to be suÆ
ient to guarantee a proper


onvergen
e behavior. The requirement to perform several 
omplete simulation 
y
les was found

to be spe
ially stringent for the initial SAEM iterations where the parameters undergo large


hanges (whi
h means that it would probably be possible to use only one simulation 
y
le when

the estimates start to stabilize).

Figure 5 and 6 display a 3D representation the traje
tories of the estimated �lter 
oeÆ
ients

(for a parti
ular run of the algorithm), with the earliest iterations at the ba
k of the �gure and

the �lter taps from left to right. All the simulation presented in this se
tion use an initial burn-in

period (with no step-size de
rease) of 100 iterations, and the 400 subsequent iterations are run

with a slow step-size de
ay (


n

= n

�0:6

) and averaging (whi
h 
orresponds to the settings of

Fig. 2-(d) with a number of iterations multiplied by a fa
tor 10). The need for a larger number

of iterations than for the simple example of se
tion 5.1 is due both to the intrinsi
 diÆ
ulty

of the task 
onsidered here and to the fa
t that we are using Monte Carlo (ie. 
orrelated and

non-exa
tly distributed) simulations. Figure 5 
orresponds to the use of the single 
omponent

1

It 
an be shown that the blind 
onvolution model is indeed identi�able up to a s
ale fa
tor, as long as the

�lter order is 
orre
tly spe
i�ed. In pra
tise however, for a moderate observation length, shifted versions of the

�lter lead to high likelihood values, parti
ularly in 
ases su
h as the one 
onsidered here where the �lter has very

small 
oeÆ
ients near the �rst and last taps.
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Figure 5: Estimates of the �lter 
oeÆ
ients using single 
omponent independent sampler (Se
.

4.2) with 3 sampler 
y
les per SAEM iteration.

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

filter coeff.
iterations

Figure 6: Estimates of the �lter 
oeÆ
ients using blo
k Gibbs updates (Se
. 4.3) with 3 
y
les

per SAEM iteration.
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sampling s
heme des
ribed in se
tion 4.2, while �gure 6 
orresponds to the use of the blo
k-

Gibbs sampling pro
edure (whi
h is based on data-augmentation using the mixture indi
ators

q

1:T

as auxiliary variables { see se
tion 4.3). For 
omparison purpose, the 
oeÆ
ients of the

�lter used for simulating the data are displayed at the front of ea
h diagram (points indi
ated

by 
ir
les).
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Figure 7: Estimates of the �lter 
oeÆ
ients using single 
omponent independent sampler (Se
.

4.2) with 30 sampler 
y
les per SAEM iteration.

With the single site sampling te
hnique (Fig. 5), the estimates 
onverge more slowly and

there are 
lear indi
ations that the SAEM algorithm is indeed still far from having 
onverged

after 500 iterations (this is parti
ularly obvious for taps 1 and 3). On the other hand, on Fig.

6, the estimates obtained with the blo
k Gibbs sampling te
hnique stabilize very qui
kly: After

the �rst 100 iterations (whi
h 
orrespond to the initial burn in period) only slight adjustments

are visible whi
h is in 
ontrast with the slow drifts observed for some taps on Fig. 5. This

signi�
ant di�eren
e in the eÆ
ien
y of the simulation samplers based on single site sampling

and blo
k sampling has been observed for many appli
ations involving similar state spa
e models

[17℄, [8℄, [53℄. Available results suggest that the blo
k sampling approa
h signi�
antly redu
es

the 
orrelation between subsequent simulations 
ompared to the single site update strategy and

thus improve the mixing properties of the simulation 
hain. This point is illustrated on �gure

7 where the single site update strategy is used with 30 
omplete simulation 
y
les per SAEM

iteration: When allowed to run for larger numbers of simulation steps, the simpler approa
h

does yield results whi
h are quite 
omparable to that of the blo
k sampling s
heme of Fig. 6.

Without getting into very detailed argument about the respe
tive 
omputation load and

memory requirement asso
iated with the two sampling options, it is 
lear that the 
omputation

time needed for running a single 
y
le of the blo
k sampling approa
h is slightly more than for

a 
y
le of the single site update but 
ertainly less than what is needed for 10 
omplete 
y
les of

the single site update. In pra
tise, the 
hoi
e of the simulation 
omponent should thus take into

a

ount the possibility or not to obtain a Gaussian mixture representation for the sour
e (and

noise) signal, whi
h is a requirement for using the more sophisti
ated sampling approa
hes of

se
tions 4.3-4.4 (see [10℄, [36℄ for examples of the use of \approximate" mixture representations).
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6 Further topi
s

As a 
on
lusion, we would like to point out several dire
tions in whi
h the te
hniques presented

in this paper 
ould be extended.

The assumption that the noise is Gaussian may be unrealisti
 in some appli
ations (in an

impulsive noise environment, for instan
e). This assumption 
an be relaxed, the only stri
t re-

quirement being that the 
omplete data-likelihood still belongs to the 
urved exponential family.

The most dire
t extension 
onsists in using a Gaussian mixture model for the noise pdf [29℄, [23℄.

In this 
ase, all the simulation te
hniques des
ribed in se
tion 4 
an be used sin
e the model still

is Gaussian 
onditionally to the sour
e and noise mixture indi
ators (whi
h 
orresponds to the

most general setting used in [8℄, [17℄ or [9℄). Mixture of more general exponential distributions


an also be 
onsidered. Note however that in this 
ase, one has to resort to the systemati
 sweep

Metropolis-Hasting strategy (se
tion 4.2).

As another possible extension, one may 
onsider a general ARMA model instead of the MA

model. Su
h an extension is straightforward when the underlying ARMA model has a Markovian

representation similar to that given by eqs. (27)-(28). Extension to non-
ausal AR and ARMA

models is still an open problem (see Rosenblatt [59℄ and the referen
es therein).

Finally, as mentioned in the introdu
tion, the te
hniques presented therein are 
losely related

to the so-
alled fully Bayesian estimation. In this approa
h, a prior (possibly non-informative)

pdf is sele
ted for the model parameter and posterior mean of the parameter pdf is used as

a point estimator. Several fully Bayesian blind de
onvolution methods are presented in [29℄,

[23℄, [1℄, [15℄, [14℄. The potential advantage of this approa
h lies in the fa
t that it is, at least

theoreti
ally, insensitive to the initialization. These methods are however 
omputationally more

demanding be
ause they need to explore the full posterior distribution of the parameters and

not just only the neighborhood of a maximum of the likelihood fun
tion. Comparison of the

approa
h presented in this paper with fully Bayesian estimation, espe
ially for moderate sample

sizes, is thus an interesting and important question.
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