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Abstrat

Blind linear system identi�ation onsists in estimating the parameters of a linear time-

invariant system given its (possibly noisy) response to an unobserved input signal. Blind

system identi�ation is a ruial problem in many appliations whih range from geophysis

to teleommuniations, either for its own sake or as a preliminary step towards blind deon-

volution (ie. reovery of the unknown input signal). This paper presents a survey of reent

stohasti algorithms, related to the Expetation-Maximixation (EM) priniple, that make it

possible to estimate the parameters of the unknown linear system in the maximum likelihood

sense. Emphasis is on the omputational aspets rather than on the theoretial questions.

A large setion of the paper is devoted to numerial simulations tehniques, adapted from

the Markov Chain Monte Carlo (MCMC) methodology, and their eÆient appliation to the

noisy onvolution model under onsideration.

Keywords Blind system identi�ation, Maximum likelihood estimation, Expetation Max-

imization (EM), Stohasti algorithms, Markov Chain Monte Carlo (MCMC)



1 Introdution

Blind linear system identi�ation onsists in estimating the parameters of a linear time-invariant

system given its (possibly noisy) response to an unobserved input signal. In many appliations,

the ultimate goal is indeed blind deonvolution whih aims at reovering the unobserved input

signal itself. Most blind deonvolution approahes, however rely on the blind identi�ation of

the �lter oeÆients. These two problems have been the topi of a large number of ontributions

in the reent years (see Donoho [21℄ and [47℄ for early referenes; Nikias and Mendel [51℄, Haykin

[30℄, Cadzow [6℄ and the referenes therein for an updated aount). Many of these ontribu-

tions deal with higher-order umulants and polyspetral tehniques, based on the pioneering

ontribution by Lii and Rosenblatt [33℄. This approah was later extended in a series of papers

by Giannakis and Mendel [27℄, Tugnait [65℄ (among many others).

In this paper, the fous is on the blind identi�ation issue andmaximum likelihood estimation

of the model parameters (whih inlude the �lter oeÆients, and possibly some harateristis

of the noise and/or of the input signal) is onsidered. Contrary to umulant or polyspetral

tehniques, maximum likelihood exploits all the available information on the probability dis-

tributions of the input and noise, whih improves the auray of the parameter estimates.

Maximum likelihood for noisy blind deonvolution problems has been only sarely addressed

in the signal proessing literature, beause the likelihood funtion annot, in most ases, be

expressed in a numerially tratable analyti form. In this ontext, simulation-based numerial

optimization approahes provide a powerful alternative to their (more well-known) determinis-

ti ounterparts, suh as the Expetation Maximization (EM) algorithm. This paper is mainly

onerned with algorithmi issues, and intends to provide some answers on how to implement

maximum likelihood in the blind deonvolution / system identi�ation ontext. Related theo-

retial aspets suh as onsisteny, asymptoti normality, asymptoti information bound, will

thus be left aside.

The paper is organized as follows: In setion 2, the general blind identi�ation problem is

desribed along with needed de�nitions and assumptions. Iterative stohasti algorithms for

obtaining maximum-likelihood parameter estimates are introdued in setion 3. These teh-

niques usually relies on a data-augmentation strategy whih requires onditional simulations of

the missing inputs. Simulation strategies that may be used for arrying out suh a task are far

from being trivial and are disussed in detail in setion 4. Finally, some simulation results are

presented in setion 5.

Remark

The question of knowing whether it is neessary to �rst identify the parameters of the model

before attempting the deonvolution is an important and yet ontroversial methodologial issue.

The two-steps approah (identi�ation of the �lter parameters followed by deonvolution) is

the most popular approah and (presumably) the most suessful to date [40℄, [13℄. In this

approah, the reovery of the input sequene is usually arried out in a Bayesian framework

by maximizing the posterior distribution of the input sequene given the �lter parameters and

the observations, or some omputationally tratable approximation of this riterion. The use

of a priori information in this ontext is of a prime importane sine the deonvolution is in

general an ill-behaved problem (with more \degrees of freedom" than the available number of

observations) [47℄, [18℄. The deterministi approahes devised for joint model identi�ation and

input reovery (\generalized likelihood", \deterministi maximum-likelihood"), although quite

suessful in the ase of Single Input Multiple Output (SIMO) systems [42℄, [31℄, do not appear

to be reliable for Single Input Single Output (SISO) systems [24℄. A reent alternative approah

for takling this joint estimation problem onsist in performing a so-alled \fully Bayesian"

simulation-based analysis (see, for instane, [23℄, [14℄, [15℄ and referenes therein). This way of

proeeding is very di�erent in spirit sine it makes it possible to perform (at least oneptually)
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various type of inferenes, suh as marginal estimation of the input sequene (where the �lter

oeÆients are onsidered as a nuisane parameter and are marginalized out). In the rest of the

paper, we will not disuss any further the deonvolution issue and we assume that the goal is

indeed maximum likelihood �lter identi�ation.

2 Blind identi�ation model

The estimation of non minimum phase system has reeived a onsiderable attention in the past

deade. Most of the methods proposed to date are based on the higher-order statistis (the

third-order or the fourth-order umulants or the orresponding frequeny-domain quantities,

e.g. the bispetrum or the trispetrum) of the output (see for example [52℄,[65℄ and the refer-

enes therein). These methods are most often straightforward to implement but are far from

being optimal from a statistial point of view when an a priori information is available on the

distribution of the input signal. Examples of this situation may be found in geophysis or in

digital ommuniations appliations: In these ases, the distribution of the input signal is either

known or at least an be modeled aurately. In these situations, important improvements in the

performane of the estimates an be expeted (and ahieved in pratie) by taking into aount

this information in the estimation proedure. A natural way to exploit this information onsist

in solving the blind identi�ation problem in the maximum likelihood sense.

As outlined above, maximum likelihood has only sarely be used for parameter estimation

in noisy deonvolution problems, exept when the input is disrete and belongs to a �nite

alphabet, a situation of interest in digital ommuniation (see [34℄,[2℄,[60℄ and the referenes

therein). Extensions to more general input models have only marginally been addressed.

2.1 Blind identi�ation as an inomplete data problem

From a statistial point of view, blind identi�ation is a typial example of a problem whih

involve unobserved data. Unobserved (also known as inomplete, or missing) data models forms

a large and important lass whih has reeived a onsiderable interest in the statistial literature

during reent years. Before going further, some notations and de�nitions are presented.

Let y , (y

1

; � � � ; y

T

)

0

denote the vetor of observed data samples. It is assumed that

y

t

=

p

X

l=0

h

l

z

t�l

+ �n

t

; (1)

where fz

t

g is the (unobserved) input sequene, h = (h

0

; � � � ; h

p

)

0

is the vetor of MA oeÆients,

and fn

t

g is an (unobserved) additive noise. In this model, the input sequene z = (z

1�p

; � � � ; z

T

)

0

plays the role of the missing data and (y; z) is referred to as the omplete data. It is further

assumed that

� (M1) fz

t

g is an iid. sequene of random variables with known probability distribution

funtion (pdf) p(z

t

) (with respet to some dominating measure �

z

).

� (M2) fn

t

g is an iid. sequene of zero-mean Gaussian variables with unit variane.

� (M3) The proesses fz

t

g and fn

t

g are independent.

As is lear from above, we restrit ourself to the ase of Single-Input Single-Output (SISO)

moving-average (MA) models. The extension to Multiple-Input Multiple-Output (MIMO) MA

models would be straightforward (exept for added notational omplexity). A more hallenging

question onerns the extension to, possibly non-ausal, IIR �lters models. Another possible ex-

tension is the ase of non-Gaussian measurement noise fn

t

g: assumption (M2) ould be relaxed

so as to allow for mixture of Gaussian, Laplaian, or other exponential family of pdf. These two
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last points are disussed in some more details in the onlusion of the paper. Finally, assumption

(M1) ould be relaxed by assuming that the pdf p(z

t

) belongs to some known parametri family,

and depends upon an unknown �nite-dimensional parameter. The adaptations needed to han-

dle this ase are, at least oneptually, straightforward but it raises some important questions

(identi�ability, asymptoti eÆieny) that are not onsidered here.

The parameters � of the model to be estimated inludes both the �lter oeÆients h and the

noise variane �

2

. Under these assumptions, the log-likelihood orresponding to the omplete

data is, up to onstant terms,

log p(z;y;�) = �

T

2

log �

2

�

1

2�

2

T

X

t=1

(y

t

� h

0

z

t

)

2

; (2)

whih an be rewritten as

log p(z;y;�) = L(S

1

(z);S

2

(z);�) ; (3)

with

L(S

1

;S

2

;�) = �

T

2

log �

2

�

1

2�

2

 

T

X

t=1

y

2

t

� 2h

0

S

1

+ h

0

S

2

h

!

;

S

1

(z) =

T

X

t=1

y

t

z

t

;

S

2

(z) =

T

X

t=1

z

t

z

0

t

; (4)

where z

t

, (z

t

; � � � ; z

t�p

)

0

. S

1

(z) and S

2

(z) are the suÆient statistis for the omplete-data

model (dependene of S

i

(z) on y is impliit). Maximum Likelihood Estimates (MLE) of the

unknown parameters in the omplete data model are given by

^

h = S

2

(z)

�1

S

1

(z) ;

�̂

2

=

1

T

 

T

X

t=1

y

2

t

�

^

h

0

S

1

(z)

!

: (5)

Unfortunately, when the input data z is not observed, the atual likelihood orresponding to the

observed data only is obtained by marginalization of (2), that is by integrating over the values

of the unobserved input data sequene:

p(y;�) =

Z

1

�1

� � �

Z

+1

�1

p(y; z;�)

T

Y

t=1�p�1

p(z

t

)�

z

(dz

t

) : (6)

Beause of the multiple integration, (6) annot in general be evaluated in a tratable analyti

form.

2.2 The EM paradigm

The EM algorithm an be seen as an iterative method for �nding the modes of the likelihood

funtion, whih is extremely useful for models where it is hard to maximize the likelihood diretly

but easy to work with the `omplete' data model. The EM algorithm formalizes a relatively old

idea for handling missing data: Starting with a guess of the parameters, (1) replae the missing

values by their expetations given the guessed parameters, (2) estimate parameters assuming the

missing data are given by their estimated values, (3) reestimate the missing values assuming the
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new parameter estimates are orret, (4) reestimate parameters, and so forth, until onvergene.

In fat, the EM algorithm is more eÆient than these four steps would suggest sine eah

missing data value is not estimated separately; instead those funtions of the missing data that

are needed to estimate the model parameters are estimated jointly.

The name \EM" omes from the two alternating steps: Computation of the expetation of the

needed funtions (or in other words, suÆient statistis) of the missing values, and estimation

of the parameters by maximization using the expeted values of the suÆient as if they had

been omputed from observed values of the missing data (see [19℄, [62℄, the historial review

of [32℄, as well as reent developments in [48℄). More preisely, denote �

(n�1)

the urrent �t of

the parameter before the nth iteration of the algorithm. At iteration n, the E-step amounts to

omputing

Q(�j�

(n�1)

) = E

�

log p(y; z;�)jy; �

(n�1)

�

: (7)

The M-step onsists in �nding the parameter �

(n)

that maximizes Q(�j�

(n�1)

) in the feasible

set �. For the onvolution model, it is easily seen from (3) and (4) that Q(�j�

(n�1)

) may be

written as

Q(�j�

(n�1)

) = L(

�

S

1

(�

(n�1)

);

�

S

2

(�

(n�1)

);�) ; (8)

where

�

S

1

(�) =

T

X

t=1

y

t

E(z

t

jy;�)

0

;

�

S

2

(�) =

T

X

t=1

E(z

t

z

0

t

jy;�) : (9)

The maximization step is thus arried out as in (5), replaing the omplete data suÆient statis-

tis by their expeted values. The main diÆulty with this sheme is that diret omputation of

E(z

t

jy;�) and E(z

t

z

0

t

jy;�) is, for many soure signal models, intratable. The only exeptions

to that rule are when (i) the soure is Gaussian - whih is of ourse only of marginal interest

in a blind identi�ation ontext beause of the inherent limited identi�ability of the �lter - and

when (ii) soure is disrete. The later ase is of partiular interest in digital ommuniations

appliations. It has been addressed by many authors, after the pioneering ontribution of Kaleh

and Vallet [34℄ (see also [60℄ and [2℄). The speial feature of the disrete (�nite) ase is that the

expetation of any funtion of the unobserved input signal z

t

an be evaluated from the proba-

bilities P (z

t

) = v

k

, where v

1

; � � � ; v

K

are the possible values of the input signal. More preisely,

the state vetor z

t

de�ned in the previous setion an take at most M = K

(p+1)

di�erent values

whih we denote by v

m

. Eq. (9) thus redues to

�

S

(n)

i

=

T

X

t=1

y

t

M

X

m=1

S

i

(v

m

)P (z

t

= v

m

jy;�

(n�1)

) for i = 1; 2 : (10)

Moreover, the posterior probabilities P (z

t

= v

m

jy;�

(n�1)

) that appear in (10), an be omputed

eÆiently using a two-pass algorithm introdued by Baum and his olleagues in the early 1970s,

whih is known as the Forward-bakward proedure [55℄, [45℄. In all other situations, the EM

paradigm is not diretly exploitable, and need some adaptations.

3 EM-related stohasti algorithms

In this setion, several possible variations around the basi EM paradigm are presented. The

priniple of all these methods onsists in replaing the expliit omputation of the expetations
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by some kind of stohasti integration proedure. These methods thus all requires stohasti

simulations of the missing data, or of some other auxiliary data. Appliable simulation proe-

dures for the noisy onvolution model will be onsidered in setion 4.

A word of aution is needed here: For the sake of simpliity, all the algorithms presented

in this setion are desribed as if it was possible to perform exat independent simulations of

the required stohasti quantities. We shall however see in setion 4 that the diÆulty of the

simulation task itself should not be overlooked. For the model under onsideration, we will

onsider Markov hain simulation tehniques and show that the hoie of a partiular sampling

strategy an substantially a�et the onvergene behavior of the algorithms.

3.1 MCEM: Monte Carlo EM algorithm

Monte Carlo EM, as proposed by Wei and Tanner [66℄, [62℄, onsists in omputing approximately

the EM intermediate quantity de�ned by (9) by use of Monte Carlo integration. Basially, the

nth E-step is replaed by the following proedure:

1. Multiple simulations: Draw M(n) values z

(n;i)

(i = 1; � � � ;M(n)) of the missing data

vetor under p(zjy;�

(n�1)

), the a posteriori distribution of the missing data given the

observations and the urrent estimate of the parameters.

2. Monte Carlo integration: Approximate Q(�j�

(n�1)

) with

^

Q(�j�

(n�1)

) =

1

M(n)

M(n)

X

i=1

log p

�

(y; z

(n;i)

) : (11)

(3) and (4) imply that

^

Q(�j�

(n�1)

) = L(

^

S

(n)

1

;

^

S

(n)

2

;�) where

^

S

(n)

j

=

1

M(n)

M(n)

X

i=1

S

1

(z

(n;i)

) for j = 1; 2 ; (12)

where S

1

(z) and S

2

(z) are de�ned in (4).

In ertain models, although it is not possible to ompute diretly E(S

i

(z)jy;�), it is feasible

to ompute E(S

i

(z)jy;q;�), where q are some auxiliary missing variables. If sampling from

p(qjy;�) is simpler or more eÆient than sampling diretly from p(zjy;�), it may be advanta-

geous to adapt the MCEM sheme presented above. Bayes formula implies that

E(S

i

(z)jy;�) =

Z

E(S

i

(z)jy;q;�)p(qjy;�)�

q

(dq) ; (13)

and the modi�ed sheme goes as follows

1. Multiple simulations: Draw M(n) values q

(n;i)

(i = 1; � � � ;M(n)) of the auxiliary missing

data vetor under p(qjy;�

(n�1)

).

2. Monte Carlo integration: Approximate E(S

i

(z)jy;�) with

^

S

(n)

i

=

1

M(n)

M(n)

X

i=1

E(S

i

(z)jy; q

(n;i)

;�

(n�1)

) : (14)

Eq. (14) relies on the exat omputation of E(S

i

(z)jy; q;�) (whih has to be feasible). Suh

shemes whih mix simulation and analyti integration (an operation whih is desribed as

\parametri Rao-Blakwellization" in [11℄) are often preferable beause they make the estimates

of the suÆient statistis more reliable.

5



There are very few available results onerning the onvergene of Monte Carlo EM. It is

important to note that unlike EM, Monte Carlo EM does not deterministially inreases the

atual likelihood of the parameters at eah iteration. This situation whih is harateristi

of stohasti optimization algorithms makes the onvergene analysis more omplex to study.

Under suitable tehnial onditions (see, e.g. [5, 44℄), MCEM may be shown to onverge with

probability 1 to a stationary point of the likelihood when M(n) ! 1 is inreasing with the

iteration index n at a appropriate rate (typially, M(n) = O(n

�

), with � > 0). Inreasing

the number of simulations at eah stage, dereases the simulation variane of the Monte-Carlo

approximation of the onditional expetation and thus the simulation variane of the parameter

estimate. This is of ourse at the expense of the omputational eÆieny, and some pratial

trade-o� must be found.

3.2 Stohasti EM

The Stohasti EM (SEM) algorithm of Celeux and Diebolt [12℄, [20℄ tries to irumvent the

problems of MCEM by using only one single simulation of the unobserved data at eah iteration

(usingM(n) = 1). This is really an illustration of the \�lling-in" or imputation priniple sine at

eah step, a pseudo vetor of the omplete data is simulated using the information brought by the

observations y and the urrently available estimate of the parameters �

(n�1)

. With M(n) = 1,

there is no stabilizing mehanism whih would ensure that the sequene of parameter estimates

f�

n

g does onverge (in some proper sense) to a deterministi value. Averaged estimates of the

form

^

�

(p)

=

1

n�m

0

n

X

p=n

0

�

(p)

; (15)

where m

0

is the length of the burn-in period during whih the output estimates are disarded

(so as to redue the inuene of the initial ondition). Very few is known about the onvergene

of the SEM algorithm (see [32℄). It has been shown, for some spei� models [20℄ (e.g. mixture

of Gaussian pdfs), that

^

�

(n)

is a onsistent and asymptotially normal estimate of the parameter

(but

^

�

(n)

does not neessarily onverge to a maximum likelihood estimate or a signi�ant mode

of the likelihood funtion). Note that these results do not readily apply to the onvolution model

onsidered here, and the onvergene of

^

�

(n)

to a meaningful value still is an open question.

3.3 SAEM: Stohasti Approximation EM algorithm

The SAEM (for Stohasti Approximation EM) algorithm proposed by Lavielle et al. [41℄ uses

a stohasti approximation proedure in order to estimate the onditional expetation of the

omplete data log-likelihood. The basi idea is that rather than using a large number of simula-

tions at eah step, the expetation needed to perform the E-step of EM an be approximated by

aumulation of the statistis omputed for all previous iterations, with some suitable forgetting

mehanism. The nth E-step of SAEM onsists in:

� Simulation : Sample one realization z

(n)

of the missing data vetor under p(zjy;�

(n�1)

).

� Stohasti approximation : Update the urrent approximation of the EM intermediate

quantity aording to

^

Q

(n)

(�) =

^

Q

(n�1)

(�) + 

n

�

log p(y; z

(n)

;�)�

^

Q

(n�1)

(�)

�

; (16)

where (

j

) is a sequene of positive step-sizes.
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One of the interest of SAEM is that all the results obtained for stohasti approximation in a

general framework an be used. In partiular, an appropriate hoie of the sequene of step-sizes

guarantees almost-sure pointwise onvergene of the sequene of parameter estimates to a loal

maxima of the likelihood for a wide lass of probability models (see Lavielle [41℄ for tehnial

details).

The step-size ontrols the amount of stohasti exitation that is fed into the algorithm at

eah iteration. The step-sizes should not derease to rapidly in order to avoid the onvergene

towards spurious stationary points (e.g. saddle points or loal minima). On the other hand,

onvergene of the estimates will only our when the step-size beomes lose to zero. Typial

hoies are 

n

= (1=n)

�

, with 1=2 < � � 1 [38℄. All the tehniques developed to speed up

onvergene of stohasti algorithms and to redue the variane of the estimates an be used,

suh as Polyak's [54℄ averaging sheme or Kesten's [35℄ proedure for omputing an optimal

sequene of step-sizes.

For blind deonvolution models, (3) shows that updating

^

Q

(n�1)

(�) is equivalent to updating

the approximations of the onditional expetation of the suÆient statistis de�ned in (4), so

that (16) redues to:

^

S

(n)

i

=

^

S

(n�1)

i

+ 

n

�

S

i

(z

(n)

)�

^

S

(n�1)

i

�

for i = 1; 2 : (17)

Computation of �

(n+1)

an then be arried out diretly using (5).

Note that as was the ase for the MCEM algorithm, the SAEM algorithm an also be adapted

to ases where it is more appropriate to sample from auxiliary missing variables. Then, instead

of (17) the updating of

^

S

(n)

i

is be arried out as follows

^

S

(n)

i

=

^

S

(n�1)

i

+ 

n

h

E(S

i

(z)jy;q

(n)

;�

(n�1)

)�

^

S

(n�1)

i

i

: (18)

4 Simulation tehniques

The stohasti versions of the EM algorithm presented in the previous setion require simulation

of the missing input samples under p (z jy;� ). This simulation step is not straightforward to

implement as the input samples are not onditionally independent given the observed output

samples. In this setion, several possible methods for simulating the missing inputs are pre-

sented. In Subsetion 4.1, a general Markov Chain Monte Carlo (MCMC) sampler is presented

to simulate under the posterior p(zjy;�). More eÆient sampling strategies, �tted to the ase

where the input data pdf is a mixture of Gaussian, are presented in setion 4.3.

For notational onveniene, the dependene on the urrent value of the parameter � of all

the probability distribution funtions is omitted in this setion.

4.1 Basi Priniples

MCMC (Markov Chain Monte Carlo) is a lass of stohasti simulation methods designed for

sampling from multivariate distributions (generally of high-dimensionality). These methods

appeared in the statistial literature in the early 80's and are very useful in the �elds image pro-

essing and omputational statistis. MCMC tehniques are well-doumented in the literature

(see [4℄, [25℄, [28℄, [57℄, [61℄ and referenes therein) and only a brief aount of these methods is

given here.

The idea is very simple. Suppose that we need to sample from a distribution f (x) where

x , (x

1

; � � � ; x

n

) 2 X � R

n

whih is known (perhaps up to multipliative onstant). f will

be referred to as the target distribution. If f is very omplex so that it is no diret sampling

method available, an indiret method for obtaining samples from f onsists in onstruting a

Markov hain (aperiodi and irreduible), whose stationary (or invariant) distribution is f(x).

Then, if the hain is run for long enough, simulated values from the hain an be treated as

7



a dependent samples from the target distribution, and used as shown in the previous setion.

There are many important implementation issues assoiated with MCMC methods, inluding,

amongst others, the hoie of the hain's transition mehanism, and tehniques to ontrol the

onvergene to the limit distribution.

Gibbs Sampler

The Gibbs sampler was �rst introdued for image restoration by Geman and Geman [26℄ and

Besag [3℄. An extensive aount of the Gibbs sampler may be found in the tutorials by Smith and

Roberts [61℄, Gelfand and Smith [25℄ and Besag et al [4℄. The Gibbs sampler proeeds by splitting

the state vetor into a number of omponents and updating eah in turn by a series of Gibbs

transitions. Suppose that the state vetor is split into q � n omponents

�

x

1

; � � � ; x

q

�

. Having

seleted omponent x

i

to be updated, the Gibbs transition kernel produes a new state vetor

x

0

= (x

1

; � � � ; x

i�1

; y; x

i+1

; x

q

) where y is sampled from f(x

i

jx

�i

), the onditional distribution

of x

i

, given the values of the other omponents x

�i

= [x

1

; � � � ; x

i�1

; x

i+1

; � � � ; x

q

℄, 1 � i � q.

Ideally, the onditional distribution f(x

i

jx

�i

) should be easy to sample form (ie. is a \standard"

distribution). However, in the ases where the onditional distribution is non-standard, there are

ways to sample from the appropriate onditionals (see next setion). The basi Gibbs sampler

uses a �xed sequene of Gibbs transition kernels, eah of whih updates a di�erent omponent

of the state vetor, as follows:

Algorithm 1 (Gibbs sampler)

1. Set an arbitrary starting value x

(0)

=

�

x

(0)

1

; � � � ; x

(0)

q

�

for the �rst iteration (k = 1).

2. At iteration index k,

� Sample x

(k)

1

from f

�

x

1

jx

(k)

�1

�

,

� Sample x

(k)

2

from f

�

x

2

jx

(k)

�2

�

,

� � � �

� Sample x

(i)

q

from f

�

x

(k)

q

�

�

�

x

(k)

�q

�

,

where x

(k)

�i

,

�

x

(k)

1

; � � � ; x

(k)

i�1

; x

(k�1)

i+1

; � � � ; x

(k�1)

q

�

.

Iteration of the full yle of random variate generations from eah of the full ondition-

als, produes a sequene whih is a realization of a Markov hain with stationary distribution

f(x) (under onditions that are disussed in [63℄, [57℄). This sampling algorithm, where eah

omponent is updated in turn, is sometimes referred to as the systemati sweep Gibbs sampler.

However, the Gibbs transition kernel need not be used in this systemati manner, and many

other implementations are possible, suh as the random sweep Gibbs sampler, whih randomly

selets a omponent to be updated at eah iteration, and thus uses a mixture (rather than a

yle) of Gibbs updates.

Metropolis-Hasting algorithm

The Metropolis-Hasting algorithm is an alternative and more general updating sheme, where

values are drawn from an arbitrary (yet sensibly hosen) distributions and are aepted or rejeted

in suh a way that, asymptotially, they behave as dependent random observations from the

target distribution. This method is a form of generalized rejetion sampling approah and is

widely appliable [28℄, [57℄.
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The Metropolis Hasting update proeeds as follows. Suppose we wish to update x, �rst a

andidate observation y is sampled form an arbitrary pdf q(x; y) that depends on the urrent

state of the hain x. The hoie of q is essentially arbitrary (subjet to the ondition that the

resulting Markov hain is aperiodi is irreduible): It is generally seleted so that sampling from

this (proposal) distribution is easy. The andidate y is aepted with probability

�(x; y) = min

�

1;

f(y) q(y; x)

f(x) q(x; y)

�

: (19)

In the ase where the andidate is rejeted, the hain remains in its urrent state x. Note that

f only enters through � and the ratio f(y)=f(x), so that the knowledge of the distribution only

up to a multipliative onstant is suÆient for implementation. There are an in�nite range of

hoies for q, see Tierney [63℄ and Chib and Greenberg [16℄. The most often used proposal are

Random Walk Metropolis If q(x; y) = �(y�x) for some arbitrary density �, then the kernel

driving the hain is a random walk. There are many ommon hoies for � inluding

the uniform distribution on an hypersphere, a multivariate normal, or an over-dispersed

multivariate student t-distribution.

The independent sampler If q(x; y) = �(y), then the andidate observation is drawn inde-

pendently of the urrent state of the hain. In this ase, the aeptane probability an

be written as,

�(x; y) = min(1; w(y)=w(x)) ;

where the ratio w(x) = f(x)=�(x) is known as the importane weight funtion [62℄.

Data augmentation sampling

In ertain ases, it is more appropriate to sample not diretly from f(x) but from an augmented

pdf g(x; v) suh that f(x) is the marginal distribution of g(x; v) with respet to v. This is

typially the ase when sampling from the f alone is not so easy. This approah, known as data

augmentation was introdued in the statistial literature by Tanner and Wong [62℄.

An example of a `Gibbs-style' data augmentation sampler is given below, where the aug-

mented state-vetor is split in two bloks x and v.

Algorithm 2 (Data augmentation sampler)

1. Set an arbitrary starting value v

(0)

2. At iteration index k, sample

� x

(k)

from p(xjv

(k�1)

),

� and v

(k)

from p(vjx

(k)

),

where p(xjv) (resp. p(vjx)) denotes the onditional distribution of x given v (resp. v given

x), derived from g.

Sampling the two sub-omponents x and v in blok, rather than element by element as in the

basi Gibbs paradigm, is usually preferable (if it is feasible) beause it redues the orrelation

between subsequent outputs of the Markov simulation hain [8℄, [43℄, [58℄.
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4.2 A general-purpose sampler for blind deonvolution

In the appliation under onsideration, it is required to sample from p(zjy). A �rst, and per-

haps not optimal, proedure proeeds by dividing the data vetor z into its salar omponents

z

1�p

; � � � ; z

T

.

Gibbs Sampler

To implement a systemati sweep Gibbs sampler, we need to evaluate full onditional distribu-

tion. Under the assumptions stated above, the full onditional may be expressed as

p(z

t

jy

1:T

; z

1�p:t�1

; z

t+1:T

) / p(y

1:T

jz

1:T

)p(z

t

) (20)

/

min(t+p;T )

Y

i=max(t;1)

p(y

i

jz

i

)p(z

t

): (21)

where / means \proportional to" and y

1:T

, (y

1

; � � � ; y

T

)

0

, z

1�p:t

, (z

1�p

; � � � ; z

t

, z

1:T

,

(z

1

; � � � ;z

T

)

0

, et. Most often, the full-onditional distribution does not belong to a standard

distribution family for whih eÆient sampling algorithms are readily available. One important

exeption ours when the pdf of z

t

is a mixture of Gaussian beause the full onditional still

is a mixture of Gaussian in this ase. We shall see however in setion 4.3 that there are more

eÆient sampling sheme for handling this partiular ase. In other situations, one need to

resort to an hybrid strategy, mixing the Gibbs sampler and a Metropolis-Hasting proedure.

Single-omponent independent sampler

The Metropolis-Hasting within Gibbs algorithm (also known as a one-at-a-time Metropolis-

Hastings sheme) onsists in updating eah individual omponent in turn, via a single Metropolis-

Hasting update until all omponents have been visited. This solution is equivalent to the

so-alled hybrid Gibbs sampler, suggested by Muller [50℄. The most straightforward solution

onsists in running an independent sampler using the prior distribution of z

t

as the proposal

distribution. The proedure for updating the t-th omponent z

t

, 1� P � t � T , goes as follow

Algorithm 3 (Single-omponent independent sampler)

� Sample ~z

i

from the prior distribution p(z).

� Aept ~z

i

with probability

�(z

i

; ~z

i

) = min

 

1; exp

"

�(2�

2

)

�1

i

max

X

i=i

min

(y

i

� h

0

~
z

t

)

2

� (y

i

� h

0

z

t

)

2

#!

;

where i

min

= max(t; 1), i

max

= min(t+ p; T ) and
~
z

i

= [z

i

; � � � ; z

t+1

; ~z

t

; z

t�1

; � � � ; z

i�p

℄

0

, for

i

min

� i � i

max

.

Compared to a random walk Metropolis-Hasting proedure, the independene sampler de-

sribed above has the advantage that it doesn't neessitate any tuning of the proposal distri-

bution. On the other hand, the independene sampler an only be used when simulation from

p(z) is feasible, and it may lead to high rejetion ratios for ertain distributions.

In pratie, only a few iterations (or more preisely a few omplete yles) of the sampling

proedure are performed to obtain the simulation needed at eah SEM, MCEM or SAEM step.

This is de�nitely not enough to guarantee onvergene of the sampler to its limiting target

distribution, but it proves in pratie to be enough to ensure proper onvergene of the estimates.
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4.3 Sampling shemes for Gaussian mixtures

The mixture of Gaussian model deserves speial attention; this model has been used extensively

in geophysis for seismi trae inversion (see Mendel [47℄). It is also frequently used to model

soures with impulsive behavior, like neutroni soures (see Douet et al [23℄ for appliations).

One partiular ase of interest, is the Bernoulli-Gaussian distribution whih is a two omponents

mixture of Gaussian with zero means and largely di�erent varianes [13℄, [40℄, [15℄. A slightly

di�erent perspetive onsists in using mixture models in a semi-parametri ontext, where the

distribution of the input data is not preisely known. The motivation for using mixtures here is

that any `smooth' probability distribution funtion p(z

t

) may be approximated by a mixture of

Gaussian, provided that the number of omponents is large enough. Thus when K is suÆiently

large, it an be expeted that the estimate of the �lter oeÆients are \lose to optimal" for

a large lass of input distributions p(z

t

) [49℄. There are several theoretial as well as pratial

issues in that diretion, that still need be answered.

A Gaussian mixture model has the form [64℄, [56℄

p(z) =

K

X

k=1

�

k

�(z;�

k

; �

2

k

); (22)

where �

k

are the statistial weights of the omponents of the mixture, and �(�;�

k

; �

k

) is the

Gaussian probability density with mean �

k

and variane �

2

k

. It is often enlightening to onsider

that the observations in a mixture models are inomplete sine (22) orresponds to the following

data-generation mehanism

z

t

jq

t

� �(z

t

;�

q

t

; �

2

q

t

); (23)

where q

t

is an unobservable random variable taking its value in the set f1; � � � ;Kg, with prob-

ability distribution P (q

t

= k) = �

k

(1 � k � K). The variables q

t

are often referred to as the

labels or the ategories, or more formally as the mixture omponent indiators (see Titterington

et al. [64℄ for a omplete aount of mixture models).

It is worthwhile to note that, onditionally to q

1�p:T

= [q

1�p

; � � � ; q

T

℄

0

and y

1:T

= [y

1

; � � � ; y

T

℄

0

,

the random vetor z

1�p:T

= [z

1�p

; � � � ; z

T

℄

0

is Gaussian. It is shown below that it is possible

to sample diretly in blok from p(z

1�p:T

jq

1�p:T

; y

1:T

), using a reursive algorithm derived from

the Kalman �lter and smoother. Next, it is easily seen that

p(q

1�p:T

jz

1�p:T

; y

1:T

) =

T

Y

t=1�p

p(q

t

jz

t

) ; (24)

where p(q

t

jz

t

) is a (disrete) multinomial distribution and

p(q

t

= kjz

t

) =

�

k

�(z

t

;�

k

; �

2

k

)

P

K

j=1

�

j

�(z

t

;�

j

; �

2

j

)

: (25)

It is thus straightforward to sample in blok from the onditional distribution of q

1�p:T

given

z

1�p:T

; y

1:T

. This suggests to use the data augmentation sampler introdued in the previous

setion. Two alternative methods to sample from p(z

1:T

jy

1:T

; q

1�p:T

) are given below. The �rst,

proposed by Carter and Kohn [8℄, is straightforward to implement. A somewhat more involved

sheme with better numerial eÆieny is desribed next.

Method I: State sampler

The sampling proedure developed below is based on the following observation: Conditional to

y

1:T

and q

1�p:T

, z

1:T

is an inhomogeneous Markov hain, in the sense that :

p(z

1:T

jy

1:T

; q

1�p:T

) = p(z

T

jy

1:T

; q

1�p:T

)

T�1

Y

t=1

p(z

t

jy

1:t

;z

t+1

; q

1�p:T

) : (26)
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Eq. (26) suggests the following strategy to sample from p(z

1:T

jy

1:T

; q

1�p:T

): (1) First, sample

from the onditional distribution of the last state vetor p(z

T

jy

1:T

; q

1�p:T

), (2) sample bakward-

in-time (for t = T � 1; :::; 1), from p(z

t

jy

1:t

;z

t+1

; q

1�p:T

). This strategy requires sampling from

p(z

t

jy

1:t

;z

t+1

; q

1�p:T

), whih is feasible beause [z

t

; y

1:t

;z

t+1

℄ is a Gaussian vetor onditionally

to q

1�p:T

. All we need to ompute is thus the onditional mean and variane of z

t

given y

1:t

,

z

t+1

and q

1�p:T

. For that purpose, a Kalman �lter is used.

A few additional notations are in order. First, it is onvenient to onsider the observation

model in state-spae form

y

t

= h

0

z

t

+ �n

t

; (27)

z

t+1

= Sz

t

+ (m

t

+ r

t

u

t

)e ; (28)

where S is the down-shift matrix and e , (1; 0; � � � ; 0)

0

. fu

t

g

t��p

and fn

t

g

t�1

are independent

sequenes of i.i.d. Gaussian standardized random variables. The attention of the reader is

drawn on the fat that the onvention used above requires that m

t

, �

q

t+1

and r

t

, �

q

t+1

.

Despite the minor disagreement of this index shift, the onvention used in (28) is prefered sine

it orresponds to standard state-spae form of a dynami linear systems [7℄.

The simulation proedure proeeds in two pass: A forward pass, where the quantities of

interest are omputed using the Kalman �lter reursions; A bakward pass, where sampling is

performed from a normal distribution with parameters determined from the quantities omputed

in the forward pass. Denote:

�

t

= y

t

� y

tjt�1

innovation proess

d

t

= E(�

2

t

) variane of the innovation proess

z

tjt�1

one-step ahead state preditor

z

tjt

�ltered state estimate

(29)

Here the notation y

tjv

and (resp. z

tjv

) denote the orthogonal projetion (in the Hilbert spae of

square integrable random variables) of y

t

(resp. z

t

) onto the losed linear span of f1; y

1

; � � � ; y

v

g.

Let:

�

tjt�1

= E

h

(z

t

� z

tjt�1

)(z

t

� z

tjt�1

)

0

i

and �

tjt

= E

h

(z

t

� z

tjt

)(z

t

� z

tjt

)

0

i

;

denote the one step-ahead state predition and the state �lter ovariane matries, respetively.

Algorithm 4 (Kalman �lter) Initialize the reursion with z

1j0

= [m

0

;m

�1

; � � � ;m

�p

℄

0

and

�

1j0

= diag[r

2

0

; r

2

�1

; � � � ; r

2

�p

℄, and ompute, for 1 � t � T ,

�

t

= y

t

� h

0

z

tjt�1

innovation update

d

t

= h

0

�

tjt�1

h+ �

2

variane of the innovation

k

t

= d

�1

t

�

tjt�1

h Kalman gain update

z

tjt

= z

tjt�1

+ k

t

�

t

state �ltering equation

�

tjt

= �

tjt�1

� d

t

k

t

k

0

t

ovariane of the �ltering error

z

t+1jt

= Sz

tjt

+m

t

e state preditor update

�

t+1jt

= S�

tjt

S

0

+ r

2

t

ee

0

ovariane of the predition error

(30)

When running the Kalman �lter, the quantities z

tjt

, �

tjt

, z

t+1jt

and �

t+1jt

should be stored

(note that the omputation of z

tjt

and �

tjt

during the forward pass an be skipped: In pratise,

it may be more onvenient to store only z

t+1jt

, �

t+1jt

, k

t

and d

t

and to perform the needed

omputations during the bakward pass). The bakward simulation proeeds as follow:

1. Simulate z

T

under a multivariate normal distribution with mean z

T jT

and ovariane �

T jT

.
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2. For t = T �1; � � � ; 1, sample z

t�p

from a salar Gaussian distribution with mean ~m

t�p

and

variane ~r

t�p

given by

~m

t�p

= j

0

�

z

tjt

+ �

tjt

S

0

�

�1

t+1jt

�

z

t+1

� z

t+1jt

��

;

~r

t�p

= j

0

�

�

tjt

� �

tjt

S

0

�

�1

t+1jt

S�

tjt

�

j ; (31)

where the vetor j , (0; 0; � � � ; 1)

0

selets the last omponent.

This simulation tehnique whih orrespond to the straightforward appliation of (26) requires

the inversion of a (p+1)�(p+1) matrix at eah iteration step, whih an beome omputationally

involved when the �lter order p is large.

Method II: Disturbane sampler

For the deonvolution model, the fat that the dimension of the disturbane noise u

t

is muh less

than that of the state vetor z

t

makes it possible to derive an equivalent simulation algorithm

with a redued omplexity. The disturbane sampler introdued by De Jong and Shephard [17℄

samples diretly a realization of the disturbane noise sequene u

1:T�1

, whih together with

a simulation of the initial state z

1

an be used to obtain the omplete sequene z

1:T

. This

algorithm is based on a bakward Gram-Shmidt orthogonalization and on previous results on

the so-alled disturbane smoother established independently by Mendel [46℄ and Koopman [37℄.

Algorithm 5 (Disturbane sampler)

1. Kalman �lter (Forward �ltering): Run the Kalman �lter as indiated by (30), and store �

t

, d

t

and L

t

, S(I� k

t

h

0

), where I denotes the (p+ 1)� (p+ 1) identity matrix.

2. Bakward sampling: For t = T � 1; � � � ; 1 ompute

U

t

=

�

d

�1

T

hh

0

for t = T � 1

�

d

�1

t+1

hh

0

+ 

�1

t+1

v

t+1

v

0

t+1

+ L

0

t+1

U

t+1

L

t+1

�

if t � T � 2

(32)

p

t

=

�

d

�1

T

�

T

h for t = T � 1

�

d

�1

t+1

�

t+1

h� 

�1

t+1

~�

t+1

v

t+1

+ L

0

t+1

p

t+1

�

if t � T � 2

(33)

v

t

= r

t

L

0

t

U

t

e ; (34)

and



t

= 1� r

2

t

e

0

U

t

e : (35)

Simulate ~�

t

from �(�; r

t

e

0

p

t

; 

t

) and ompute

~z

t+1

= m

t

+ r

t

~�

t

:

3. Initial state: Compute

U

0

=

�

d

�1

1

hh

0

+ 

�1

1

v

1

v

0

1

+ L

0

1

U

1

L

1

�

; (36)

p

0

=

�

d

�1

1

�

1

h� 

�1

1

~�

1

v

1

+ L

0

1

p

1

�

; (37)
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and set

m

0

= (m

0

;m

�1

; � � � ;m

�p

)

0

R

0

= diag(r

2

0

; r

2

�1

; � � � ; r

2

�p

) : (38)

Simulate
~
z

1

(in one blok) from

� (�; m

0

+R

0

p

0

; R

0

�R

0

U

0

R

0

) :

The basi priniple of the above disturbane sampler onsists in performing a reursive bakward

Gram-Shmidt orthogonalization of the disturbane noise sequene u

t

; 1 � t � T � 1 [17℄. Thus,

rather than trying to ompute diretly the mean and variane of u

t

onditional to u

t+1:T�1

; y

1:T

,

one onsiders the orthonormal sequene de�ned as �

t

= u

t

� u

tjH

t+1

, where H

t+1

is the losed

linear span of u

t+1:T�1

; y

1:T

(whih oinides, by onstrution, with that of �

t+1:T

; �

t+1:T�1

).

4.4 Sampling only the mixture indiators

As indiated at the end of setion 3.1, it may be advantageous to sample from an auxiliary set of

dummy variables rather than from the missing data vetor z

1�p:T

itself. In the ase of Gaussian

mixture, there are evidene that MCMC algorithms that samples the indiator variables q

1�p:T

without sampling the missing data z

1�p:T

are more eÆient (faster onverging and mixing of the

hain) than the data augmentation shemes desribed above [9℄.

For the moving average onvolution model onsidered in this paper, it is extremely simple to

derive a single site Gibbs sampling for simulating the mixture indiator variables q

t

, 1 � t � T .

Eq. (20) implies that the onditional distribution p(q

t

jy

1:T

; q

1�p:t�1

; q

t+1:T

) may be expressed as

p(q

t

jy

1:T

; q

1�p:t�1

; q

t+1:T

) / p (y

1:T

j q

1�p:T

) p (q

1�p:T

)

/ p

�

y

max(t;1):min(t+p;T )

�

�

q

max(t�p;1�p):min(t+p;T )

�

p (q

t

) : (39)

In the following, we shall assume that 1 � t � T�p for the sake of brevity (the modi�ations

needed to handle the ase of boundaries are straightforward and omitted here). First note that,

given q

t�p:t+p

, z

t�p:t+p

is onditionally Gaussian with mean vetor and ovariane matrix

�

t

= (�

q

t�p

; � � � �

q

t+p

)

0

�

t

= diag(�

2

q

t�p

; � � � �

2

q

t+p

) : (40)

Then using (27), it is easy to see that

y

t:t+p

= T (h) z

t�p:t+p

+ �n

t:t+p

;

where T (h) is the (p+ 1)� (2p+ 1) Sylvester matrix de�ned as

T (h) ,

0

B

B

B

�

h

0

h

1

� � � h

p

0 � � � � � � 0

0 h

0

h

1

� � � h

p

0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � � � � 0 h

0

h

1

� � � h

p

1

C

C

C

A

; (41)

and n

t:t+p

= [n

t

; � � � ; n

t+p

℄

0

. Under the stated assumptions, n

t:t+p

is a (p + 1) � 1 standard

normal vetor, whih implies that

p(q

t

jy

1:T

; q

1�p:t�1

; q

t+1:T

) / �

q

t

�

�

y

t:t+p

; T (h)�

t

;T (h)�

t

T (h)

0

+ �

2

I

�

; (42)

where I is the (p+1)� (p+1) identity matrix. Eq. (42) has to be evaluated for the K possible

values of q

t

, q

t

= 1; � � � ;K yielding the atual onditional probabilities after re-normalization.

The above proedure is a muh simpli�ed version of the algorithm desribed in [9℄ for arbitrary

onditionally Gaussian state-spae models.
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To omplete the expetation step (see eqs. (14) and (18)), it is neessary to evaluate the

following quantities

E(z

t

jy

1:T

; q

1�p:T

) and E(z

t

z

0

t

jy

1:T

; q

1�p:T

) for 1 � t � T :

Sine the onditional distribution of z

1:T

given y

1:T

and q

1�p:T

is Gaussian, these quantities

may be eÆiently omputed using a disturbane smoother whih many similarities with the

disturbane sampler desribed in setion 4.3.

Algorithm 6 (Disturbane smoother)

1. Kalman �lter (Forward �ltering): Run the Kalman �lter as indiated by (30), and store �

t

, d

t

,

�

t+1jt

and L

t

= S(I� k

t

h

0

).

2. Bakward smoothing: For t = T � 1; � � � ; 1 ompute

U

t

=

�

d

�1

T

hh

0

for t = T � 1

�

d

�1

t+1

hh

0

+ L

0

t+1

U

t+1

L

t+1

�

if t � T � 2

(43)

p

t

=

�

d

�1

T

�

T

h for t = T � 1

�

d

�1

t+1

�

t+1

h+ L

0

t+1

p

t+1

�

if t � T � 2

(44)

Store

E [z

t+1

jy

1:T

; q

1�p:T

℄ = m

t

+ r

2

t

e

0

p

t

; (45)

and

E

��

z

t+1

�E[z

t+1

jy

1:T

; q

1�p:T

℄

�

(z

t+1

�E[z

t+1

jy

1:T

; q

1�p:T

℄)

�

=

r

2

t

�

(1� r

2

t

e

0

U

t

e)e� S�

tjt�1

L

0

t

U

t

e

�

: (46)

3. Initial state: Compute

U

0

=

�

d

�1

1

hh

0

+ L

0

1

U

1

L

1

�

; (47)

p

0

=

�

d

�1

1

�

1

h+ L

0

1

p

1

�

; (48)

and ompute

E [z

1

jy

1:T

; q

1�p:T

℄ =m

0

+R

0

p

0

; (49)

E

�

(z

1

�E[z

1

jy

1:T

; q

1�p:T

℄) (z

1

�E[z

1

jy

1:T

; q

1�p:T

℄)

0

�

= R

0

�R

0

U

0

R

0

; (50)

where m

0

and U

0

are de�ned as in (38).

Equations (45) and (49) diretly yield the a posteriori mean of the unobserved input signal,

whereas (46) and (50) an be used to obtain reursively the a posteriori ovariane of eah state

vetor Covfz

t

� E[z

t

jy

1:T

; q

1�p:T

℄g noting that for a MA system it is indeed only neessary to

ompute the �rst line or �rst olumn when Covfz

t�1

�E[z

t�1

jy

1:T

; q

1�p:T

℄g is already known.
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5 Simulation results

In this setion, some numerial results and omparisons are provided to illustrate the behavior

of the estimation methods as well as the inuene of the hoie of a partiular simulation

strategy. Only the SAEM method (see setion 3.3) will be onsidered here sine most onlusive

onvergene results obtained to date pertain to this method.

5.1 Finite-valued input

We begin with a very simple model, for whih exat independent sampling is feasible, in order to

illustrate the role of the step-size ontrol strategy in the SAEM tehnique. Let's assume that the

input signal z

t

is iid. and takes values plus or minus one with probability 1=2, the order p of the

�lter is set to one and the unknown parameters inlude both the two oeÆients of the �lter and

the Gaussian noise variane �

2

. This �nite-valued input model is of muh interest in the domain

of digital ommuniation and, as disussed in setion 2.2, it is the only blind onvolution model

for whih the EM algorithm an be diretly applied using the forward-bakward reursions.

Conditional simulation of the input symbol sequene given the observations and the model

parameters an also be arried out from the quantities omputed during the forward-bakward

reursions [8℄, [22℄.

Fig. 1 displays the log-likelihood surfae (optimized with respet to the noise variane �

2

for eah ombination of the two �lter oeÆients). It is striking to see that even for suh a

simplisti ase, the log-likelihood surfae is already quite omplex with a loal maximum (point

labeled LOC) distint from the atual maximum of the likelihood (indiated by the MLE label).

The sequene of dots visible on the surfae represent the position of the �rst 50 iterates of a

SAEM sequene with what seems to be the most appropriate tuning of the step-size deay for

this partiular model (see Fig. 2). Of ourse, sine the algorithm is stohasti, the sequene

of estimates depends not only on the initial guess of the parameters (there are positions from

whih the algorithm will eventually onverge to the LOC point) but also on the partiular run

of the algorithm.

Fig. 2 illustrates the importane of the step-size deay sheme for a proper onvergene of

the SAEM algorithm. Note that for eah setting of the step-size deay, �ve di�erent runs of

the algorithm are displayed in order to give an idea of the randomness of the sequenes. Fig.

2 (a) and (b) orresponds to the two limit ases for whih onvergene of SAEM to a loal

maxima of the likelihood is guaranteed [41℄: Fig. 2-(a) orresponds to a fast deay with very

smooth sample paths, while Fig. 2-(b) display results obtained with a slow deay for whih the

sample paths are rougher and more variable from run to run. With a slow step-size deay, the

algorithm onverges muh more quikly to the region of interest around the mode (in 10 to 20

iterations), but the stabilization of the estimates will take muh longer than when using a fast

deay. It is possible to improve over this behavior simply by starting to average the estimates

at some point (see [54℄, [38℄ for a full aount of the merits of averaging) as in Fig. 2-(), where

the estimates obtained after the tenth iteration are averaged. It is important to note that for

optimal onvergene behavior, the averaging should be performed afterwards and that in no way

should the averaged estimates be used while running the SAEM. Finally, Fig. 2-(d) shows that

in most ases it is very useful to allow for a burn-in period during whih the step-size is set to

1 (as if running the SEM algorithm) so as to loate more rapidly the region of interest.

5.2 Impulsive input

We now onsider a ase whih genuinely requires sophistiated methods suh as the ones onsid-

ered in this paper. This model, whih is ommonly used for the deonvolution of seismi traes

measurements [47℄, [13℄, [39℄, assumes that the input signal is distributed as a mixture of two
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Figure 1: Pro�le log-likelihood max

�

2 log p(y;h; �

2

) for a sequene of T = 150 observations

(6 dB SNR). The dots orresponds to a sequene of SAEM estimates using the weight deay

sheme of Fig. 2-(d). The point labeled LOC is a loal maxima of the likelihood.
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Figure 2: Relative deviation to the MLE (in L

2

norm) on a log-sale for �ve SAEM sample

paths for di�erent step-size deay shemes: (a) 

n

= n

�1

; (b) 

n

= n

�1=2+�

; () 

n

= n

�1=2+�

,

with averaging after the tenth iteration; (d) 

n

= n

�1=2+�

with averaging for n > 10, and a

burn-in period of 10 iterations (with 

n

= 1 for n � 10).
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Figure 3: Atual onvolution �lter (irles) with initial guess (stars). The dotted line features

the ontinuous-time wavelet.
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Figure 4: Input sequene and noise orrupted �lter output (5 dB SNR).
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Gaussian distributions

z

t

� ��(0; �

2

1

) + (1� �)�(0; �

2

2

);

where �

2

� �

1

, and � is lose to 1. Although simple, this Bernouilli-Gaussian model provides

a realisti haraterization of impulsive input sequenes. We use a syntheti data set whose

parameters are taken from the analysis of atual seismi data: � = 0:9, �

2

1

= 0:02, �

2

2

= 5,

T = 200 (data size), p = 8 (�lter order), Signal-to-Noise Ratio (SNR) 5 dB (white Gaussian

noise). The �lter used for the simulation is displayed on �gure 3 (points indiated by irles),

while the dotted line indiates the ontinuous time \wavelet" (see [47℄ for details onerning the

geophysial appliation) from whih it is sampled. Fig. 4 shows the input signal together with

the observed signal (their time origins slightly di�er sine the input signal is extended to inlude

the initial state z

1

). The parameters to be estimated inlude both the vetor of �lter oeÆients

h and the observation noise variane �

2

. The estimation problem is quite ompliated both

beause of the low SNR and of the form of the onvolution �lter itself (non minimum-phase

system, with only two zeros lose to the unit irle).

Considering the multimodal aspet of the likelihood observed for the muh simpler ase of

Fig. 1, it an be expeted that the estimation will be sensitive to the hoie of the initial guess

of the parameters. It turns out that the key point is to start from a reliable estimate of the

overall delay introdued by the �lter, otherwise the proedure onverge to time-shifted versions

of the orret �lter

1

. To allow for more meaningful omparisons, we will thus only disuss the

results obtained with the initialization displayed on �gure 3 (oeÆients indiated by stars)

whih orrespond to a simple 3 taps delay.

Compared to the example onsidered in the previous setion (�nite-valued input), there is

a very signi�ant oneptual di�erene: For the example under onsideration, it is no longer

possible to obtain exat independent simulations distributed under the onditional distribution

p(z

1:T

jy

1:T

;h; �

2

). It is thus neessary to use the Markov hain sampling tehniques desribed in

setion 4. It would of ourse be very ineÆient to re-initialize theses simulations hains and run

them for a large number of iterations (so as to obtain independent and approximately distributed

samples) in between eah SAEM iteration. In pratise, only a few yles of the Markov hain

simulation sampler are run at eah SAEM iteration and the hains are not reinitialized but are

rather re-started from their urrent value. Although very eÆient in pratise, this ombination

of SAEM and Markov hain simulation still needs to be evaluated theoretially sine urrently

available results onern the ase of exat independent sampling [41℄. For the model under

onsideration, the use of 3 omplete simulation yles (ie. 3 onseutive simulations of the

omplete missing data vetor) per SAEM iteration seems to be suÆient to guarantee a proper

onvergene behavior. The requirement to perform several omplete simulation yles was found

to be speially stringent for the initial SAEM iterations where the parameters undergo large

hanges (whih means that it would probably be possible to use only one simulation yle when

the estimates start to stabilize).

Figure 5 and 6 display a 3D representation the trajetories of the estimated �lter oeÆients

(for a partiular run of the algorithm), with the earliest iterations at the bak of the �gure and

the �lter taps from left to right. All the simulation presented in this setion use an initial burn-in

period (with no step-size derease) of 100 iterations, and the 400 subsequent iterations are run

with a slow step-size deay (

n

= n

�0:6

) and averaging (whih orresponds to the settings of

Fig. 2-(d) with a number of iterations multiplied by a fator 10). The need for a larger number

of iterations than for the simple example of setion 5.1 is due both to the intrinsi diÆulty

of the task onsidered here and to the fat that we are using Monte Carlo (ie. orrelated and

non-exatly distributed) simulations. Figure 5 orresponds to the use of the single omponent

1

It an be shown that the blind onvolution model is indeed identi�able up to a sale fator, as long as the

�lter order is orretly spei�ed. In pratise however, for a moderate observation length, shifted versions of the

�lter lead to high likelihood values, partiularly in ases suh as the one onsidered here where the �lter has very

small oeÆients near the �rst and last taps.
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Figure 5: Estimates of the �lter oeÆients using single omponent independent sampler (Se.

4.2) with 3 sampler yles per SAEM iteration.
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Figure 6: Estimates of the �lter oeÆients using blok Gibbs updates (Se. 4.3) with 3 yles

per SAEM iteration.
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sampling sheme desribed in setion 4.2, while �gure 6 orresponds to the use of the blok-

Gibbs sampling proedure (whih is based on data-augmentation using the mixture indiators

q

1:T

as auxiliary variables { see setion 4.3). For omparison purpose, the oeÆients of the

�lter used for simulating the data are displayed at the front of eah diagram (points indiated

by irles).
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Figure 7: Estimates of the �lter oeÆients using single omponent independent sampler (Se.

4.2) with 30 sampler yles per SAEM iteration.

With the single site sampling tehnique (Fig. 5), the estimates onverge more slowly and

there are lear indiations that the SAEM algorithm is indeed still far from having onverged

after 500 iterations (this is partiularly obvious for taps 1 and 3). On the other hand, on Fig.

6, the estimates obtained with the blok Gibbs sampling tehnique stabilize very quikly: After

the �rst 100 iterations (whih orrespond to the initial burn in period) only slight adjustments

are visible whih is in ontrast with the slow drifts observed for some taps on Fig. 5. This

signi�ant di�erene in the eÆieny of the simulation samplers based on single site sampling

and blok sampling has been observed for many appliations involving similar state spae models

[17℄, [8℄, [53℄. Available results suggest that the blok sampling approah signi�antly redues

the orrelation between subsequent simulations ompared to the single site update strategy and

thus improve the mixing properties of the simulation hain. This point is illustrated on �gure

7 where the single site update strategy is used with 30 omplete simulation yles per SAEM

iteration: When allowed to run for larger numbers of simulation steps, the simpler approah

does yield results whih are quite omparable to that of the blok sampling sheme of Fig. 6.

Without getting into very detailed argument about the respetive omputation load and

memory requirement assoiated with the two sampling options, it is lear that the omputation

time needed for running a single yle of the blok sampling approah is slightly more than for

a yle of the single site update but ertainly less than what is needed for 10 omplete yles of

the single site update. In pratise, the hoie of the simulation omponent should thus take into

aount the possibility or not to obtain a Gaussian mixture representation for the soure (and

noise) signal, whih is a requirement for using the more sophistiated sampling approahes of

setions 4.3-4.4 (see [10℄, [36℄ for examples of the use of \approximate" mixture representations).
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6 Further topis

As a onlusion, we would like to point out several diretions in whih the tehniques presented

in this paper ould be extended.

The assumption that the noise is Gaussian may be unrealisti in some appliations (in an

impulsive noise environment, for instane). This assumption an be relaxed, the only strit re-

quirement being that the omplete data-likelihood still belongs to the urved exponential family.

The most diret extension onsists in using a Gaussian mixture model for the noise pdf [29℄, [23℄.

In this ase, all the simulation tehniques desribed in setion 4 an be used sine the model still

is Gaussian onditionally to the soure and noise mixture indiators (whih orresponds to the

most general setting used in [8℄, [17℄ or [9℄). Mixture of more general exponential distributions

an also be onsidered. Note however that in this ase, one has to resort to the systemati sweep

Metropolis-Hasting strategy (setion 4.2).

As another possible extension, one may onsider a general ARMA model instead of the MA

model. Suh an extension is straightforward when the underlying ARMA model has a Markovian

representation similar to that given by eqs. (27)-(28). Extension to non-ausal AR and ARMA

models is still an open problem (see Rosenblatt [59℄ and the referenes therein).

Finally, as mentioned in the introdution, the tehniques presented therein are losely related

to the so-alled fully Bayesian estimation. In this approah, a prior (possibly non-informative)

pdf is seleted for the model parameter and posterior mean of the parameter pdf is used as

a point estimator. Several fully Bayesian blind deonvolution methods are presented in [29℄,

[23℄, [1℄, [15℄, [14℄. The potential advantage of this approah lies in the fat that it is, at least

theoretially, insensitive to the initialization. These methods are however omputationally more

demanding beause they need to explore the full posterior distribution of the parameters and

not just only the neighborhood of a maximum of the likelihood funtion. Comparison of the

approah presented in this paper with fully Bayesian estimation, espeially for moderate sample

sizes, is thus an interesting and important question.
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