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Abstract

Blind linear system identification consists in estimating the parameters of a linear time-
invariant system given its (possibly noisy) response to an unobserved input signal. Blind
system identification is a crucial problem in many applications which range from geophysics
to telecommunications, either for its own sake or as a preliminary step towards blind decon-
volution (ie. recovery of the unknown input signal). This paper presents a survey of recent
stochastic algorithms, related to the Expectation-Maximixation (EM) principle, that make it
possible to estimate the parameters of the unknown linear system in the maximum likelihood
sense. Emphasis is on the computational aspects rather than on the theoretical questions.
A large section of the paper is devoted to numerical simulations techniques, adapted from
the Markov Chain Monte Carlo (MCMC) methodology, and their efficient application to the
noisy convolution model under consideration.

Keywords Blind system identification, Maximum likelihood estimation, Expectation Max-
imization (EM), Stochastic algorithms, Markov Chain Monte Carlo (MCMC)



1 Introduction

Blind linear system identification consists in estimating the parameters of a linear time-invariant
system given its (possibly noisy) response to an unobserved input signal. In many applications,
the ultimate goal is indeed blind deconvolution which aims at recovering the unobserved input
signal itself. Most blind deconvolution approaches, however rely on the blind identification of
the filter coefficients. These two problems have been the topic of a large number of contributions
in the recent years (see Donoho [21] and [47] for early references; Nikias and Mendel [51], Haykin
[30], Cadzow [6] and the references therein for an updated account). Many of these contribu-
tions deal with higher-order cumulants and polyspectral techniques, based on the pioneering
contribution by Lii and Rosenblatt [33]. This approach was later extended in a series of papers
by Giannakis and Mendel [27], Tugnait [65] (among many others).

In this paper, the focus is on the blind identification issue and mazimum likelihood estimation
of the model parameters (which include the filter coefficients, and possibly some characteristics
of the noise and/or of the input signal) is considered. Contrary to cumulant or polyspectral
techniques, maximum likelihood exploits all the available information on the probability dis-
tributions of the input and noise, which improves the accuracy of the parameter estimates.
Maximum likelihood for noisy blind deconvolution problems has been only scarcely addressed
in the signal processing literature, because the likelihood function cannot, in most cases, be
expressed in a numerically tractable analytic form. In this context, simulation-based numerical
optimization approaches provide a powerful alternative to their (more well-known) determinis-
tic counterparts, such as the Expectation Maximization (EM) algorithm. This paper is mainly
concerned with algorithmic issues, and intends to provide some answers on how to implement
maximum likelihood in the blind deconvolution / system identification context. Related theo-
retical aspects such as consistency, asymptotic normality, asymptotic information bound, will
thus be left aside.

The paper is organized as follows: In section 2, the general blind identification problem is
described along with needed definitions and assumptions. Iterative stochastic algorithms for
obtaining maximum-likelihood parameter estimates are introduced in section 3. These tech-
niques usually relies on a data-augmentation strategy which requires conditional simulations of
the missing inputs. Simulation strategies that may be used for carrying out such a task are far
from being trivial and are discussed in detail in section 4. Finally, some simulation results are
presented in section 5.

Remark

The question of knowing whether it is necessary to first identify the parameters of the model
before attempting the deconvolution is an important and yet controversial methodological issue.
The two-steps approach (identification of the filter parameters followed by deconvolution) is
the most popular approach and (presumably) the most successful to date [40], [13]. In this
approach, the recovery of the input sequence is usually carried out in a Bayesian framework
by maximizing the posterior distribution of the input sequence given the filter parameters and
the observations, or some computationally tractable approximation of this criterion. The use
of a priori information in this context is of a prime importance since the deconvolution is in
general an ill-behaved problem (with more “degrees of freedom” than the available number of
observations) [47], [18]. The deterministic approaches devised for joint model identification and
input recovery (“generalized likelihood”, “deterministic maximum-likelihood”), although quite
successful in the case of Single Input Multiple Output (SIMO) systems [42], [31], do not appear
to be reliable for Single Input Single Output (SISO) systems [24]. A recent alternative approach
for tackling this joint estimation problem consist in performing a so-called “fully Bayesian”
simulation-based analysis (see, for instance, [23], [14], [15] and references therein). This way of
proceeding is very different in spirit since it makes it possible to perform (at least conceptually)



various type of inferences, such as marginal estimation of the input sequence (where the filter
coefficients are considered as a nuisance parameter and are marginalized out). In the rest of the
paper, we will not discuss any further the deconvolution issue and we assume that the goal is
indeed maximum likelihood filter identification.

2 Blind identification model

The estimation of non minimum phase system has received a considerable attention in the past
decade. Most of the methods proposed to date are based on the higher-order statistics (the
third-order or the fourth-order cumulants or the corresponding frequency-domain quantities,
e.g. the bispectrum or the trispectrum) of the output (see for example [52],[65] and the refer-
ences therein). These methods are most often straightforward to implement but are far from
being optimal from a statistical point of view when an a priori information is available on the
distribution of the input signal. Examples of this situation may be found in geophysics or in
digital communications applications: In these cases, the distribution of the input signal is either
known or at least can be modeled accurately. In these situations, important improvements in the
performance of the estimates can be expected (and achieved in practice) by taking into account
this information in the estimation procedure. A natural way to exploit this information consist
in solving the blind identification problem in the maximum likelihood sense.

As outlined above, maximum likelihood has only scarcely be used for parameter estimation
in noisy deconvolution problems, except when the input is discrete and belongs to a finite
alphabet, a situation of interest in digital communication (see [34],[2],[60] and the references
therein). Extensions to more general input models have only marginally been addressed.

2.1 Blind identification as an incomplete data problem

From a statistical point of view, blind identification is a typical example of a problem which
involve unobserved data. Unobserved (also known as incomplete, or missing) data models forms
a large and important class which has received a considerable interest in the statistical literature
during recent years. Before going further, some notations and definitions are presented.

Let y 2 (y1,--- ,yr)" denote the vector of observed data samples. It is assumed that
p
Yt = Zhlzt,l +ong, (1)
1=0
where {2z} is the (unobserved) input sequence, h = (hg, - -- , hy,)' is the vector of MA coefficients,
and {n;} is an (unobserved) additive noise. In this model, the input sequence z = (z1_p,- - - , 2z7)’

plays the role of the missing data and (y,z) is referred to as the complete data. It is further
assumed that

e (M1) {2} is an 7d. sequence of random variables with known probability distribution
function (pdf) p(z;) (with respect to some dominating measure p).

e (M2) {n;} is an iid. sequence of zero-mean Gaussian variables with unit variance.
e (M3) The processes {z;} and {n;} are independent.

As is clear from above, we restrict ourself to the case of Single-Input Single-Output (SISO)
moving-average (MA) models. The extension to Multiple-Input Multiple-Output (MIMO) MA
models would be straightforward (except for added notational complexity). A more challenging
question concerns the extension to, possibly non-causal, IIR filters models. Another possible ex-
tension is the case of non-Gaussian measurement noise {n;}: assumption (M2) could be relaxed
so as to allow for mixture of Gaussian, Laplacian, or other exponential family of pdf. These two



last points are discussed in some more details in the conclusion of the paper. Finally, assumption
(M1) could be relaxed by assuming that the pdf p(z;) belongs to some known parametric family,
and depends upon an unknown finite-dimensional parameter. The adaptations needed to han-
dle this case are, at least conceptually, straightforward but it raises some important questions
(identifiability, asymptotic efficiency) that are not considered here.

The parameters @ of the model to be estimated includes both the filter coefficients h and the
noise variance o?. Under these assumptions, the log-likelihood corresponding to the complete

data is, up to constant terms,

T o, 1<
logp(z,y;0) = —5 logo —2—2 ~-h'z)?, (2)

which can be rewritten as

log p(z,y;0) = L(S:(z),S2(z); 09) , (3)
with
L(Sl SQ' 0) = —z IOgO' - 5 (Z y2 - 2h'81 + hISQh>
) ) 9 t )

T
Z) = Z Ytz
t=1
T
Z) = Zétég ) (4)
t=1

where z, £ (21,--- ,2z—p)". S1(z) and Sy(z) are the sufficient statistics for the complete-data
model (dependence of S;(z) on y is implicit). Maximum Likelihood Estimates (MLE) of the
unknown parameters in the complete data model are given by

A

h =Sy(z)7'S(z) ,

~2 1 a 2 i/
== (Zyt —h Sl(z)> : (5)
t=1

Unfortunately, when the input data z is not observed, the actual likelihood corresponding to the
observed data only is obtained by marginalization of (2), that is by integrating over the values
of the unobserved input data sequence:

/ /+°° (v.%60) H p(2e)pz(dzt) - (6)

t=1—p—1

Because of the multiple integration, (6) cannot in general be evaluated in a tractable analytic
form.

2.2 The EM paradigm

The EM algorithm can be seen as an iterative method for finding the modes of the likelihood
function, which is extremely useful for models where it is hard to maximize the likelihood directly
but easy to work with the ‘complete’ data model. The EM algorithm formalizes a relatively old
idea for handling missing data: Starting with a guess of the parameters, (1) replace the missing
values by their expectations given the guessed parameters, (2) estimate parameters assuming the
missing data are given by their estimated values, (3) reestimate the missing values assuming the



new parameter estimates are correct, (4) reestimate parameters, and so forth, until convergence.
In fact, the EM algorithm is more efficient than these four steps would suggest since each
missing data value is not estimated separately; instead those functions of the missing data that
are needed to estimate the model parameters are estimated jointly.

The name “EM” comes from the two alternating steps: Computation of the expectation of the
needed functions (or in other words, sufficient statistics) of the missing values, and estimation
of the parameters by mazimization using the expected values of the sufficient as if they had
been computed from observed values of the missing data (see [19], [62], the historical review
of [32], as well as recent developments in [48]). More precisely, denote 8(*~1) the current fit of
the parameter before the nth iteration of the algorithm. At iteration n, the E-step amounts to
computing

Q(816™V) = E (logp(y, 7 6)| y; 0V . (7)

The M-step consists in finding the parameter 8 that maximizes Q(0|60~") in the feasible
set ©. For the convolution model, it is easily seen from (3) and (4) that Q(0]@" V) may be
written as

Q(016"~) = L(5:(677V), 55(6""7); 0) (8)

where

T
51(0) = uF(zly;0)

T
55(0) = > E(zzily;0) - (9)

The maximization step is thus carried out as in (5), replacing the complete data sufficient statis-
tics by their expected values. The main difficulty with this scheme is that direct computation of
E(z,]y; 0) and E(z,z}|y; 0) is, for many source signal models, intractable. The only exceptions
to that rule are when (i) the source is Gaussian - which is of course only of marginal interest
in a blind identification context because of the inherent limited identifiability of the filter - and
when (i) source is discrete. The later case is of particular interest in digital communications
applications. It has been addressed by many authors, after the pioneering contribution of Kaleh
and Vallet [34] (see also [60] and [2]). The special feature of the discrete (finite) case is that the
expectation of any function of the unobserved input signal z; can be evaluated from the proba-
bilities P(z;) = v, where vy, --- ,vx are the possible values of the input signal. More precisely,
the state vector z, defined in the previous section can take at most M = K®*1) different values
which we denote by v,,. Eq. (9) thus reduces to

T M
SV =" Si(v,)Plz, = v, ly; 0" V) for i=1,2. (10)

Moreover, the posterior probabilities P(z, = v,,|y; 0("_1)) that appear in (10), can be computed
efficiently using a two-pass algorithm introduced by Baum and his colleagues in the early 1970s,
which is known as the Forward-backward procedure [55], [45]. In all other situations, the EM
paradigm is not directly exploitable, and need some adaptations.

3 EM-related stochastic algorithms

In this section, several possible variations around the basic EM paradigm are presented. The
principle of all these methods consists in replacing the explicit computation of the expectations



by some kind of stochastic integration procedure. These methods thus all requires stochastic
simulations of the missing data, or of some other auxiliary data. Applicable simulation proce-
dures for the noisy convolution model will be considered in section 4.

A word of caution is needed here: For the sake of simplicity, all the algorithms presented
in this section are described as if it was possible to perform exact independent simulations of
the required stochastic quantities. We shall however see in section 4 that the difficulty of the
simulation task itself should not be overlooked. For the model under consideration, we will
consider Markov chain simulation techniques and show that the choice of a particular sampling
strategy can substantially affect the convergence behavior of the algorithms.

3.1 MCEM: Monte Carlo EM algorithm

Monte Carlo EM, as proposed by Wei and Tanner [66], [62], consists in computing approximately
the EM intermediate quantity defined by (9) by use of Monte Carlo integration. Basically, the
nth E-step is replaced by the following procedure:

1. Multiple simulations: Draw M (n) values z(™" (i = 1,---,M(n)) of the missing data
vector under p(z|y; 0("_1)), the a posteriori distribution of the missing data given the
observations and the current estimate of the parameters.

2. Monte Carlo integration: Approximate Q(0|0("_1)) with
Q(010"") Z log e (y,z™") . (11)

3) and (4) imply that Q(8 o1y = 5’( ") 5’( ),9 where
1 2

Zs ) for j=1,2, (12)

where S1(z) and Sy(z) are defined in (4).
In certain models, although it is not possible to compute directly E(S;(z)|y; @), it is feasible
to compute E(S;(z )|y,q, ), where q are some auxiliary missing variables. If sampling from
p(qly; @) is simpler or more efficient than sampling directly from p(z|y; @), it may be advanta-
geous to adapt the MCEM scheme presented above. Bayes formula implies that

E(Si(z)ly:0) / E(Si(@)ly. a; 0)p(aly. 0)paq(da) . (13)

and the modified scheme goes as follows

1. Multiple simulations: Draw M(n) values q™" (i =1,--- ,M(n)) of the auxiliary missing
data vector under p(q|y; 8 1).

2. Monte Carlo integration: Approximate E(S;(z)|y; @) with

§(™) L S (ni). g(n—1)
S, = E(Si(z)|ly,q'™";0 . 14

Eq. (14) relies on the exact computation of FE(S;(z)|y,q;@) (which has to be feasible). Such
schemes which mix simulation and analytic integration (an operation which is described as
“parametric Rao-Blackwellization” in [11]) are often preferable because they make the estimates
of the sufficient statistics more reliable.



There are very few available results concerning the convergence of Monte Carlo EM. Tt is
important to note that unlike EM, Monte Carlo EM does not deterministically increases the
actual likelihood of the parameters at each iteration. This situation which is characteristic
of stochastic optimization algorithms makes the convergence analysis more complex to study.
Under suitable technical conditions (see, e.g. [5, 44]), MCEM may be shown to converge with
probability 1 to a stationary point of the likelihood when M (n) — oo is increasing with the
iteration index m at a appropriate rate (typically, M(n) = O(n®), with a > 0). Increasing
the number of simulations at each stage, decreases the simulation variance of the Monte-Carlo
approximation of the conditional expectation and thus the simulation variance of the parameter
estimate. This is of course at the expense of the computational efficiency, and some practical
trade-off must be found.

3.2 Stochastic EM

The Stochastic EM (SEM) algorithm of Celeux and Diebolt [12], [20] tries to circumvent the
problems of MCEM by using only one single simulation of the unobserved data at each iteration
(using M (n) = 1). This is really an illustration of the “filling-in” or imputation principle since at
each step, a pseudo vector of the complete data is simulated using the information brought by the
observations y and the currently available estimate of the parameters 01, With M (n) =1,
there is no stabilizing mechanism which would ensure that the sequence of parameter estimates
{6,,} does converge (in some proper sense) to a deterministic value. Averaged estimates of the
form

n—m
Op:no

where my is the length of the burn-in period during which the output estimates are discarded
(so as to reduce the influence of the initial condition). Very few is known about the convergence
of the SEM algorithm (see [32]). It has been shown, for some specific models [20] (e.g. mixture

of Gaussian pdfs), that 6" is a consistent and asymptotically normal estimate of the parameter

(but é(n) does not necessarily converge to a maximum likelihood estimate or a significant mode

of the likelihood function). Note that these results do not readily apply to the convolution model
(n)

considered here, and the convergence of 0" to a meaningful value still is an open question.

3.3 SAEM: Stochastic Approximation EM algorithm

The SAEM (for Stochastic Approximation EM) algorithm proposed by Lavielle et al. [41] uses
a stochastic approximation procedure in order to estimate the conditional expectation of the
complete data log-likelihood. The basic idea is that rather than using a large number of simula-
tions at each step, the expectation needed to perform the E-step of EM can be approximated by
accumulation of the statistics computed for all previous iterations, with some suitable forgetting
mechanism. The nth E-step of SAEM consists in:

e Simulation : Sample one realization z(™ of the missing data vector under p(z|y; 8~ 1).

e Stochastic approrimation : Update the current approximation of the EM intermediate
quantity according to

Q"(6) = Q"=1(8) + 7 (logp(y, =";8) - Q"1(8)), (16)

where (v;) is a sequence of positive step-sizes.



One of the interest of SAEM is that all the results obtained for stochastic approximation in a
general framework can be used. In particular, an appropriate choice of the sequence of step-sizes
guarantees almost-sure pointwise convergence of the sequence of parameter estimates to a local
maxima of the likelihood for a wide class of probability models (see Lavielle [41] for technical
details).

The step-size controls the amount of stochastic excitation that is fed into the algorithm at
each iteration. The step-sizes should not decrease to rapidly in order to avoid the convergence
towards spurious stationary points (e.g. saddle points or local minima). On the other hand,
convergence of the estimates will only occur when the step-size becomes close to zero. Typical
choices are 7y, = (1/n)%, with 1/2 < « < 1 [38]. All the techniques developed to speed up
convergence of stochastic algorithms and to reduce the variance of the estimates can be used,
such as Polyak’s [54] averaging scheme or Kesten’s [35] procedure for computing an optimal
sequence of step-sizes.

For blind deconvolution models, (3) shows that updating Q"1 (8) is equivalent to updating
the approximations of the conditional expectation of the sufficient statistics defined in (4), so
that (16) reduces to:

(n—1) (n—1)

S'i + M (Si(z(”)) - 5’1 ) for 1=1,2. (17)

s
Computation of @1 can then be carried out directly using (5).

Note that as was the case for the MCEM algorithm, the SAEM algorithm can also be adapted
to cases where it is more appropriate to sample from auxiliary missing variables. Then, instead

of (17) the updating of §m

;  is be carried out as follows
)

(n—1) (n—1)

8" = 8"V + . [ES:()ly, o™ 00) - 87 ] (18)

4 Simulation techniques

The stochastic versions of the EM algorithm presented in the previous section require simulation
of the missing input samples under p(z|y;@). This simulation step is not straightforward to
implement as the input samples are not conditionally independent given the observed output
samples. In this section, several possible methods for simulating the missing inputs are pre-
sented. In Subsection 4.1, a general Markov Chain Monte Carlo (MCMC) sampler is presented
to simulate under the posterior p(z|y; @). More efficient sampling strategies, fitted to the case
where the input data pdf is a mixture of Gaussian, are presented in section 4.3.

For notational convenience, the dependence on the current value of the parameter 6 of all
the probability distribution functions is omitted in this section.

4.1 Basic Principles

MCMC (Markov Chain Monte Carlo) is a class of stochastic simulation methods designed for
sampling from multivariate distributions (generally of high-dimensionality). These methods
appeared in the statistical literature in the early 80’s and are very useful in the fields image pro-
cessing and computational statistics. MCMC techniques are well-documented in the literature
(see [4], [25], [28], [57], [61] and references therein) and only a brief account of these methods is
given here.

The idea is very simple. Suppose that we need to sample from a distribution f (z) where
z 2 (z1,--,2,) € X C R which is known (perhaps up to multiplicative constant). f will
be referred to as the target distribution. If f is very complex so that it is no direct sampling
method available, an indirect method for obtaining samples from f consists in constructing a
Markov chain (aperiodic and irreducible), whose stationary (or invariant) distribution is f(z).
Then, if the chain is run for long enough, simulated values from the chain can be treated as



a dependent samples from the target distribution, and used as shown in the previous section.
There are many important implementation issues associated with MCMC methods, including,
amongst others, the choice of the chain’s transition mechanism, and techniques to control the
convergence to the limit distribution.

Gibbs Sampler

The Gibbs sampler was first introduced for image restoration by Geman and Geman [26] and
Besag [3]. An extensive account of the Gibbs sampler may be found in the tutorials by Smith and
Roberts [61], Gelfand and Smith [25] and Besag et al [4]. The Gibbs sampler proceeds by splitting
the state vector into a number of components and updating each in turn by a series of Gibbs
transitions. Suppose that the state vector is split into ¢ < n components (gl, - ,gq). Having
selected component z; to be updated, the Gibbs transition kernel produces a new state vector
z' = (zy," ,2;_1,Y2;,1,2z,) where y is sampled from f(z;|z_;), the conditional distribution
of z;, given the values of the other components z_; = [z, -+ ,z; 1,Z;11, - ,2,], 1 <i < q.
Ideally, the conditional distribution f(z;|z_;) should be easy to sample form (ie. is a “standard”
distribution). However, in the cases where the conditional distribution is non-standard, there are
ways to sample from the appropriate conditionals (see next section). The basic Gibbs sampler
uses a fixed sequence of Gibbs transition kernels, each of which updates a different component
of the state vector, as follows:

Algorithm 1 (Gibbs sampler)

1. Set an arbitrary starting value Q(U) = (ggo), . ,@(10)) for the first iteration (kK = 1).

2. At iteration index k,

(k)

e Sample zﬁk) from f <£1|£(—kl))
e Sample z; "’ from f <£2|£—2)

e Sample g,(f) from f (&ék)‘l(k)>v

—q
where g(_ki) £ (25’6), e 7%(5)1@2(?_11), . ’zt(lkfl)).

Tteration of the full cycle of random variate generations from each of the full condition-
als, produces a sequence which is a realization of a Markov chain with stationary distribution
f(z) (under conditions that are discussed in [63], [57]). This sampling algorithm, where each
component is updated in turn, is sometimes referred to as the systematic sweep Gibbs sampler.
However, the Gibbs transition kernel need not be used in this systematic manner, and many
other implementations are possible, such as the random sweep Gibbs sampler, which randomly
selects a component to be updated at each iteration, and thus uses a mixture (rather than a
cycle) of Gibbs updates.

Metropolis-Hasting algorithm

The Metropolis-Hasting algorithm is an alternative and more general updating scheme, where
values are drawn from an arbitrary (yet sensibly chosen) distributions and are accepted or rejected
in such a way that, asymptotically, they behave as dependent random observations from the
target distribution. This method is a form of generalized rejection sampling approach and is
widely applicable [28], [57].



The Metropolis Hasting update proceeds as follows. Suppose we wish to update z, first a
candidate observation y is sampled form an arbitrary pdf ¢(z, y) that depends on the current
state of the chain z. The choice of ¢ is essentially arbitrary (su_bject to the condition that the
resulting Markov chain is aperiodic is irreducible): It is generally selected so that sampling from
this (proposal) distribution is easy. The candidate y is accepted with probability

. () aly,2)
ate) = min (1 5 g_») | (19)

In the case where the candidate is rejected, the chain remains in its current state x. Note that
f only enters through « and the ratio f(y)/f(z), so that the knowledge of the distribution only
up to a multiplicative constant is sufficient for implementation. There are an infinite range of
choices for ¢, see Tierney [63] and Chib and Greenberg [16]. The most often used proposal are

Random Walk Metropolis If ¢(z, y) = ¢(y —z) for some arbitrary density ¢, then the kernel
driving the chain is a random walk. There are many common choices for ¢ including
the uniform distribution on an hypersphere, a multivariate normal, or an over-dispersed
multivariate student ¢-distribution.

The independent sampler If g(z,y) = ¢(y), then the candidate observation is drawn inde-
pendently of the current state of the chain. In this case, the acceptance probability can
be written as,

a(z, y) = min(1,w(y)/w(z)) ,

where the ratio w(z) = f(z)/¢(z) is known as the importance weight function [62].

Data augmentation sampling

In certain cases, it is more appropriate to sample not directly from f(x) but from an augmented
pdf g(z,v) such that f(z) is the marginal distribution of g(z,v) with respect to v. This is
typically the case when sampling from the f alone is not so easy. This approach, known as data
augmentation was introduced in the statistical literature by Tanner and Wong [62].

An example of a ‘Gibbs-style’ data augmentation sampler is given below, where the aug-
mented state-vector is split in two blocks z and v.

Algorithm 2 (Data augmentation sampler)

1. Set an arbitrary starting value v(©)

2. At iteration index k, sample
e 2 from p(z|p*~),
e and 9 from p(v|z),

where p(z|v) (resp. p(v|z)) denotes the conditional distribution of z given v (resp. v given
z), derived from g.

Sampling the two sub-components z and v in block, rather than element by element as in the
basic Gibbs paradigm, is usually preferable (if it is feasible) because it reduces the correlation
between subsequent outputs of the Markov simulation chain [8], [43], [58].



4.2 A general-purpose sampler for blind deconvolution

In the application under consideration, it is required to sample from p(z|y). A first, and per-
haps not optimal, procedure proceeds by dividing the data vector z into its scalar components
Zl—ps " 5 2T

Gibbs Sampler

To implement a systematic sweep Gibbs sampler, we need to evaluate full conditional distribu-
tion. Under the assumptions stated above, the full conditional may be expressed as

p(ze|y1:1s 21—prt—1, Zev1.:7) < p(y17|21.0)P(20) (20)
min(t+p,T")
< [ pllz)p(z). (21)
i=max(t,1)
where o means “proportional to” and yi.7 = (y1, -+ ,yr)s Z1—pt = (Zi—p,=* 21, Zyp =
(24,-+- ,2zp), etc. Most often, the full-conditional distribution does not belong to a standard

distribution family for which efficient sampling algorithms are readily available. One important
exception occurs when the pdf of z; is a mixture of Gaussian because the full conditional still
is a mixture of Gaussian in this case. We shall see however in section 4.3 that there are more
efficient sampling scheme for handling this particular case. In other situations, one need to
resort to an hybrid strategy, mixing the Gibbs sampler and a Metropolis-Hasting procedure.

Single-component independent sampler

The Metropolis-Hasting within Gibbs algorithm (also known as a one-at-a-time Metropolis-
Hastings scheme) consists in updating each individual component in turn, via a single Metropolis-
Hasting update until all components have been visited. This solution is equivalent to the
so-called hybrid Gibbs sampler, suggested by Muller [50]. The most straightforward solution
consists in running an independent sampler using the prior distribution of z; as the proposal
distribution. The procedure for updating the ¢t-th component z;, 1 — P <t < T, goes as follow

Algorithm 3 (Single-component independent sampler)

e Sample z; from the prior distribution p(z).

e Accept z; with probability

a(z;, %) = min (LGXP [—(202)_1 f (yi = P'2,)* = (yi — h'ét)2]> ;

1=%min

. ) . ~ - ,
where iy,i, = max(t, 1), imee, = min(t +p,T) and 2; = [z, -+ , Zi41, 26, 2t—1, " Zi—p| , Tor
tmin <1 < tmag-

Compared to a random walk Metropolis-Hasting procedure, the independence sampler de-
scribed above has the advantage that it doesn’t necessitate any tuning of the proposal distri-
bution. On the other hand, the independence sampler can only be used when simulation from
p(z) is feasible, and it may lead to high rejection ratios for certain distributions.

In practice, only a few iterations (or more precisely a few complete cycles) of the sampling
procedure are performed to obtain the simulation needed at each SEM, MCEM or SAEM step.
This is definitely not enough to guarantee convergence of the sampler to its limiting target
distribution, but it proves in practice to be enough to ensure proper convergence of the estimates.
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4.3 Sampling schemes for Gaussian mixtures

The mixture of Gaussian model deserves special attention; this model has been used extensively
in geophysics for seismic trace inversion (see Mendel [47]). Tt is also frequently used to model
sources with impulsive behavior, like neutronic sources (see Doucet et al [23] for applications).
One particular case of interest, is the Bernoulli-Gaussian distribution which is a two components
mixture of Gaussian with zero means and largely different variances [13], [40], [15]. A slightly
different perspective consists in using mixture models in a semi-parametric context, where the
distribution of the input data is not precisely known. The motivation for using mixtures here is
that any ‘smooth’ probability distribution function p(z;) may be approximated by a mixture of
Gaussian, provided that the number of components is large enough. Thus when K is sufficiently
large, it can be expected that the estimate of the filter coefficients are “close to optimal” for
a large class of input distributions p(z;) [49]. There are several theoretical as well as practical
issues in that direction, that still need be answered.
A Gaussian mixture model has the form [64], [56]

K
p(2) = Med(2; 1. p3), (22)
k=1
where )\ are the statistical weights of the components of the mixture, and ¢(-; uk, px) is the
Gaussian probability density with mean pj and variance p%. It is often enlightening to consider
that the observations in a mixture models are incomplete since (22) corresponds to the following
data-generation mechanism

zt|qt ~ Qs(zt;:u‘qnpgt)a (23)

where ¢; is an unobservable random variable taking its value in the set {1,--- , K}, with prob-
ability distribution P(q; = k) = A\; (1 < k < K). The variables ¢, are often referred to as the
labels or the categories, or more formally as the mizture component indicators (see Titterington
et al. [64] for a complete account of mixture models).

It is worthwhile to note that, conditionally to ¢1—p.7 = [q1—p, -+ , ¢r) and y1.7 = [y1, -, y7r|’,
the random vector zi_p. 1 = [zl_p, .-+, 2zr]" is Gaussian. It is shown below that it is possible
to sample directly in block from p(z1_p.7|¢1—p:T, y1:7), using a recursive algorithm derived from
the Kalman filter and smoother. Next, it is easily seen that

T
p(Qlfp:T|Zlfp:Tay1:T) = H p(Qt|Zt)a (24)
t=1—p

where p(q;|z;) is a (discrete) multinomial distribution and

)\k(]S(Zt; 127 pi)

7 .
St Nz g, p5)
It is thus straightforward to sample in block from the conditional distribution of g;_,.7 given
Z1—p:Tyy1:7- This suggests to use the data augmentation sampler introduced in the previous
section. Two alternative methods to sample from p(z1.7|y1.7, ¢1—p:7) are given below. The first,

proposed by Carter and Kohn [8], is straightforward to implement. A somewhat more involved
scheme with better numerical efficiency is described next.

plar = klz) = (25)

Method I: State sampler
The sampling procedure developed below is based on the following observation: Conditional to
y1.7 and qi_p.7, 21,7 is an inhomogeneous Markov chain, in the sense that :
T—1
p(21.7|Y1:7, Qi—p:T) = P(Z7|Y1:75 G1—peT) H P(Ze|y1:4, 20101, Q1 —p:T) - (26)
t=1

11



Eq. (26) suggests the following strategy to sample from p(z.p|y1:7, qi—p:7): (1) First, sample
from the conditional distribution of the last state vector p(zr|yi.7, q1—p:7), (2) sample backward-
in-time (for t =T —1,...,1), from p(2;|y1:t, 2411, q1—p:7). This strategy requires sampling from
P(2¢|y1:t, 2441, @1—p:T), Which is feasible because [z, y1.t, 2;, ] is a Gaussian vector conditionally
to qi—p:7. All we need to compute is thus the conditional mean and variance of 2z, given .,
2,1 and qi_p.7. For that purpose, a Kalman filter is used.

A few additional notations are in order. First, it is convenient to consider the observation
model in state-space form

y =h'z, +ony, (27)
2y =Sz, + (myg + reug)e, (28)
where S is the down-shift matrix and e £ (1,0,---,0)". {u;}+>_p and {n;}¢>1 are independent

sequences of i.i.d. Gaussian standardized random variables. The attention of the reader is
drawn on the fact that the convention used above requires that m; = pg,,, and 1, £ pg,,,.
Despite the minor disagreement of this index shift, the convention used in (28) is prefered since
it corresponds to standard state-space form of a dynamic linear systems [7].

The simulation procedure proceeds in two pass: A forward pass, where the quantities of
interest are computed using the Kalman filter recursions; A backward pass, where sampling is
performed from a normal distribution with parameters determined from the quantities computed
in the forward pass. Denote:

€ =Yt — Yyp—1 1nnovation process

dy = E(€?) variance of the innovation process (29)
241 one-step ahead state predictor
Zy, filtered state estimate

Here the notation y,, and (resp. gt‘v) denote the orthogonal projection (in the Hilbert space of
square integrable random variables) of y; (resp. z;) onto the closed linear span of {1,y1, -+ ,yy}.
Let:

Lyy1=FE (2, — Et\tfl)(ét - §t|t71)l] and Ty, = F (z¢ — Et|t)(§t - ét|t)l] )

denote the one step-ahead state prediction and the state filter covariance matrices, respectively.

Algorithm 4 (Kalman filter) Initialize the recursion with z,, = [mg,m_1,---,m_,]" and
Lyjo = diag[rg,r2,,- - ,rzp], and compute, for 1 <t < T,

ee =y —h'zy 4 innovation update

dy = h’I‘t‘t,lh + 02 variance of the innovation

k;, = d;lrt‘t_lh Kalman gain update

Zyp = Zyp1 + ki€, state filtering equation (30)

I‘t|t = I‘t‘t_l — dik.k} covariance of the filtering error

Zip1) = Sz + e state predictor update

Ly = SI‘t‘tS’ +rZee’ covariance of the prediction error

When running the Kalman filter, the quantities z;;, T'y, 2,11, and I';; ), should be stored
(note that the computation of 2y and I'y; during the forward pass can be skipped: In practise,
it may be more convenient to store only 2, ;;, T'yy1), ke and dy and to perform the needed
computations during the backward pass). The backward simulation proceeds as follow:

1. Simulate 27 under a multivariate normal distribution with mean 277 and covariance I'pyr.

12



2. Fort =T—1,---,1, sample z;_, from a scalar Gaussian distribution with mean m;_, and
variance 7;_, given by

~ . —1
mi_p = _]’ <§t|t + I‘t|tslrt+1\t <§t+1 - Et+1\t>> )

Frop =] (Ft|t - I‘t\tSTt_f”tSl"t\t)j : (31)
where the vector j £ (0,0,---,1) selects the last component.

This simulation technique which correspond to the straightforward application of (26) requires
the inversion of a (p+1) X (p+1) matrix at each iteration step, which can become computationally
involved when the filter order p is large.

Method II: Disturbance sampler

For the deconvolution model, the fact that the dimension of the disturbance noise u; is much less
than that of the state vector z; makes it possible to derive an equivalent simulation algorithm
with a reduced complexity. The disturbance sampler introduced by De Jong and Shephard [17]
samples directly a realization of the disturbance noise sequence uy.7—1, which together with
a simulation of the initial state z; can be used to obtain the complete sequence z;.7. This
algorithm is based on a backward Gram-Schmidt orthogonalization and on previous results on
the so-called disturbance smoother established independently by Mendel [46] and Koopman [37].

Algorithm 5 (Disturbance sampler)

1. Kalman filter (Forward filtering): Run the Kalman filter as indicated by (30), and store ¢, d;
and L; £ S(I — k;h'), where T denotes the (p + 1) x (p + 1) identity matrix.

2. Backward sampling: For t =T —1,--- ,1 compute

—1Iy —T_
Y= { C[l‘z_f}:}ﬁh’ + o Vv + L U Ly | fic:cr i ; ; — ; (32)
1 o
Pr= { (E‘ijrtji];lh — e iV + Ly Py fi(:‘r i ; ; — ; (33)
v; = LiUe, (34)
and
¢ =1—-reUse. (35)
Simulate 7; from ¢(-; r€'py, ¢;) and compute
Zi+1 = My + Tl
3. Initial state: Compute
Up = [di'hh' + ¢ 'viv) + LU L] (36)
po = [di'eth — ¢ v + Lip1] (37)
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and set
my = (mg,m_1,--- ,m,p)' Ry = diag(r%,r%l,--- 12 ) - (38)
Simulate Z; (in one block) from

¢ (-, mg+ Ropo, Ro — RoUgRy) .

The basic principle of the above disturbance sampler consists in performing a recursive backward
Gram-Schmidt orthogonalization of the disturbance noise sequence u;, 1 <t < T —1 [17]. Thus,
rather than trying to compute directly the mean and variance of w; conditional to u; 1.7 1, y1.7,
one considers the orthonormal sequence defined as 17y = u; — Wb Hysr s where H;y1 is the closed
linear span of us41.7-1,y1.7 (Which coincides, by construction, with that of e;41.7, 9i41.7-1)-

4.4 Sampling only the mixture indicators

As indicated at the end of section 3.1, it may be advantageous to sample from an auxiliary set of
dummy variables rather than from the missing data vector z;_,.r itself. In the case of Gaussian
mixture, there are evidence that MCMC algorithms that samples the indicator variables qi_p.1
without sampling the missing data z;_,.7 are more efficient (faster converging and mixing of the
chain) than the data augmentation schemes described above [9].

For the moving average convolution model considered in this paper, it is extremely simple to
derive a single site Gibbs sampling for simulating the mixture indicator variables ¢q;, 1 <t < T.
Eq. (20) implies that the conditional distribution p(q¢|y1.7, ¢1—p:t—1, @r+1:7) may be expressed as

p(qt|y1:T7 q1—p:t—1, qt+1:T) xXp (yl:T| q17p:T) b (Qpr:T)
xXp (ymax(t,l):min(ter,T)‘ Qmax(tfp,lfp):min(rkp,T)) p (qt) . (39)

In the following, we shall assume that 1 < ¢ < T —p for the sake of brevity (the modifications
needed to handle the case of boundaries are straightforward and omitted here). First note that,
given q;—p:t4p, Zt—p:t+p 15 conditionally Gaussian with mean vector and covariance matrix

e = (g p e Bgryy) B =diagol,_ -0y, ) - (40)
Then using (27), it is easy to see that
Yttrp = T () 2t—pitip + ONtetgp

where 7 (h) is the (p 4+ 1) x (2p + 1) Sylvester matrix defined as

ho hi - hy 0 - o 0
0 hy hy -+ h, 0 -+ 0
Tyl 0 (41)
0 <o =+ 0 hy hi - By
and ngpyp = [n4,-- ,myyp)’. Under the stated assumptions, nyyqp is a (p + 1) x 1 standard
normal vector, which implies that
p(Qt|yl:T, q1—p:t—1, Qt+1:T) &8 )\Qt¢ (yt:t+p ; T(h) M, T(h) EtT (h)l + J2]:) ) (42)
where I is the (p+ 1) x (p+ 1) identity matrix. Eq. (42) has to be evaluated for the K possible
values of ¢;, ¢¢ = 1,--- , K yielding the actual conditional probabilities after re-normalization.

The above procedure is a much simplified version of the algorithm described in [9] for arbitrary
conditionally Gaussian state-space models.

14



To complete the expectation step (see egs. (14) and (18)), it is necessary to evaluate the

following quantities

E(zi|y1.m, qi—pr) and E(z,zi|y1:r, qiopr) for 1<t <T.

Since the conditional distribution of 2., given yi.7 and ¢i_p.7 is Gaussian, these quantities
may be efficiently computed using a disturbance smoother which many similarities with the

disturbance sampler described in section 4.3.

Algorithm 6 (Disturbance smoother)

1. Kalman filter (Forward filtering): Run the Kalman filter as indicated by (30), and store ¢, dy,

L)) and Ly = S(I — k;h').

2. Backward smoothing: For t =T —1,--- ,1 compute
U — d7'hh’ for t=T-1
PO (A hh + L ULy 0 6 <T -2

p_{dTleTh for t=T—1
' [dt_+116t+1h + L2+1pt+1] if t<T -2

Store
E [zi1|yir, qi—pr) = my +r7e'pr
and

E (2441 — Elzep1lyrrs q1—pr)) (2641 — Elzet [yir, qi—pr))] =

r; [(1 —r7e'Use)e — STy, LiUse] .

3. Initial state: Compute
Up = [d;'hh’ + LiU L] |
po = [d'eth + Lipi] ,
and compute
Ez|y1:7, qi—p:7] = mo + Ropo ,
E (21 — Elzilyr1. 01 p7)) (21 — Elz)ly1.7, 01 p:7])'] = Ro — RoUoRy

where my and U are defined as in (38).

(46)

Equations (45) and (49) directly yield the a posteriori mean of the unobserved input signal,
whereas (46) and (50) can be used to obtain recursively the a posteriori covariance of each state
vector Cov{z; — F[z;|y1.1, q1—p:1]} noting that for a MA system it is indeed only necessary to
compute the first line or first column when Cov{z, | — E[z;,_;|y1.7, q1—p:7]} is already known.
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5 Simulation results

In this section, some numerical results and comparisons are provided to illustrate the behavior
of the estimation methods as well as the influence of the choice of a particular simulation
strategy. Only the SAEM method (see section 3.3) will be considered here since most conclusive
convergence results obtained to date pertain to this method.

5.1 Finite-valued input

We begin with a very simple model, for which exact independent sampling is feasible, in order to
illustrate the role of the step-size control strategy in the SAEM technique. Let’s assume that the
input signal z; is iid. and takes values plus or minus one with probability 1/2, the order p of the
filter is set to one and the unknown parameters include both the two coefficients of the filter and
the Gaussian noise variance o2. This finite-valued input model is of much interest in the domain
of digital communication and, as discussed in section 2.2, it is the only blind convolution model
for which the EM algorithm can be directly applied using the forward-backward recursions.
Conditional simulation of the input symbol sequence given the observations and the model
parameters can also be carried out from the quantities computed during the forward-backward
recursions [8], [22].

Fig. 1 displays the log-likelihood surface (optimized with respect to the noise variance o
for each combination of the two filter coefficients). It is striking to see that even for such a
simplistic case, the log-likelihood surface is already quite complex with a local maximum (point
labeled LOC) distinct from the actual maximum of the likelihood (indicated by the MLE label).
The sequence of dots visible on the surface represent the position of the first 50 iterates of a
SAEM sequence with what seems to be the most appropriate tuning of the step-size decay for
this particular model (see Fig. 2). Of course, since the algorithm is stochastic, the sequence
of estimates depends not only on the initial guess of the parameters (there are positions from
which the algorithm will eventually converge to the LOC point) but also on the particular run
of the algorithm.

Fig. 2 illustrates the importance of the step-size decay scheme for a proper convergence of
the SAEM algorithm. Note that for each setting of the step-size decay, five different runs of
the algorithm are displayed in order to give an idea of the randomness of the sequences. Fig.
2 (a) and (b) corresponds to the two limit cases for which convergence of SAEM to a local
maxima of the likelihood is guaranteed [41]: Fig. 2-(a) corresponds to a fast decay with very
smooth sample paths, while Fig. 2-(b) display results obtained with a slow decay for which the
sample paths are rougher and more variable from run to run. With a slow step-size decay, the
algorithm converges much more quickly to the region of interest around the mode (in 10 to 20
iterations), but the stabilization of the estimates will take much longer than when using a fast
decay. It is possible to improve over this behavior simply by starting to average the estimates
at some point (see [54], [38] for a full account of the merits of averaging) as in Fig. 2-(c), where
the estimates obtained after the tenth iteration are averaged. It is important to note that for
optimal convergence behavior, the averaging should be performed afterwards and that in no way
should the averaged estimates be used while running the SAEM. Finally, Fig. 2-(d) shows that
in most cases it is very useful to allow for a burn-in period during which the step-size is set to
1 (as if running the SEM algorithm) so as to locate more rapidly the region of interest.

2

5.2 Impulsive input

We now consider a case which genuinely requires sophisticated methods such as the ones consid-
ered in this paper. This model, which is commonly used for the deconvolution of seismic traces
measurements [47], [13], [39], assumes that the input signal is distributed as a mixture of two
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Figure 1: Profile log-likelihood max,2 logp(y;h, o?) for a sequence of T = 150 observations
(6 dB SNR). The dots corresponds to a sequence of SAEM estimates using the weight decay

scheme of Fig. 2-(d). The point labeled LOC is a local maxima of the likelihood.
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Figure 2: Relative deviation to the MLE (in L? norm) on a log-scale for five SAEM sample
paths for different step-size decay schemes: (a) v, = n~'; (b) v, = n=V/2%¢; (¢) v, = n~ /2t
with averaging after the tenth iteration; (d) v, = n

—1/2+€

burn-in period of 10 iterations (with v, = 1 for n < 10).
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Figure 4: Input sequence and noise corrupted filter output (5 dB SNR).
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Gaussian distributions

2~ Ap(0, p7) + (1 — X)(0, p3),

where ps > p1, and A is close to 1. Although simple, this Bernouilli-Gaussian model provides
a realistic characterization of impulsive input sequences. We use a synthetic data set whose
parameters are taken from the analysis of actual seismic data: A\ = 0.9, p? = 0.02, p2 = 5,
T = 200 (data size), p = 8 (filter order), Signal-to-Noise Ratio (SNR) 5 dB (white Gaussian
noise). The filter used for the simulation is displayed on figure 3 (points indicated by circles),
while the dotted line indicates the continuous time “wavelet” (see [47] for details concerning the
geophysical application) from which it is sampled. Fig. 4 shows the input signal together with
the observed signal (their time origins slightly differ since the input signal is extended to include
the initial state z;). The parameters to be estimated include both the vector of filter coefficients
h and the observation noise variance o?. The estimation problem is quite complicated both
because of the low SNR and of the form of the convolution filter itself (non minimum-phase
system, with only two zeros close to the unit circle).

Considering the multimodal aspect of the likelihood observed for the much simpler case of
Fig. 1, it can be expected that the estimation will be sensitive to the choice of the initial guess
of the parameters. It turns out that the key point is to start from a reliable estimate of the
overall delay introduced by the filter, otherwise the procedure converge to time-shifted versions
of the correct filter'. To allow for more meaningful comparisons, we will thus only discuss the
results obtained with the initialization displayed on figure 3 (coefficients indicated by stars)
which correspond to a simple 3 taps delay.

Compared to the example considered in the previous section (finite-valued input), there is
a very significant conceptual difference: For the example under consideration, it is no longer
possible to obtain exact independent simulations distributed under the conditional distribution
p(z1.7|y1.1; h, 02). It is thus necessary to use the Markov chain sampling techniques described in
section 4. It would of course be very inefficient to re-initialize theses simulations chains and run
them for a large number of iterations (so as to obtain independent and approximately distributed
samples) in between each SAEM iteration. In practise, only a few cycles of the Markov chain
simulation sampler are run at each SAEM iteration and the chains are not reinitialized but are
rather re-started from their current value. Although very efficient in practise, this combination
of SAEM and Markov chain simulation still needs to be evaluated theoretically since currently
available results concern the case of exact independent sampling [41]. For the model under
consideration, the use of 3 complete simulation cycles (ie. 3 consecutive simulations of the
complete missing data vector) per SAEM iteration seems to be sufficient to guarantee a proper
convergence behavior. The requirement to perform several complete simulation cycles was found
to be specially stringent for the initial SAEM iterations where the parameters undergo large
changes (which means that it would probably be possible to use only one simulation cycle when
the estimates start to stabilize).

Figure 5 and 6 display a 3D representation the trajectories of the estimated filter coefficients
(for a particular run of the algorithm), with the earliest iterations at the back of the figure and
the filter taps from left to right. All the simulation presented in this section use an initial burn-in
period (with no step-size decrease) of 100 iterations, and the 400 subsequent iterations are run
with a slow step-size decay (v, = n %) and averaging (which corresponds to the settings of
Fig. 2-(d) with a number of iterations multiplied by a factor 10). The need for a larger number
of iterations than for the simple example of section 5.1 is due both to the intrinsic difficulty
of the task considered here and to the fact that we are using Monte Carlo (ie. correlated and
non-exactly distributed) simulations. Figure 5 corresponds to the use of the single component

1t can be shown that the blind convolution model is indeed identifiable up to a scale factor, as long as the
filter order is correctly specified. In practise however, for a moderate observation length, shifted versions of the
filter lead to high likelihood values, particularly in cases such as the one considered here where the filter has very
small coefficients near the first and last taps.
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Figure 5: Estimates of the filter coefficients using single component independent sampler (Sec.
4.2) with 3 sampler cycles per SAEM iteration.
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Figure 6: Estimates of the filter coefficients using block Gibbs updates (Sec. 4.3) with 3 cycles
per SAEM iteration.
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sampling scheme described in section 4.2, while figure 6 corresponds to the use of the block-
Gibbs sampling procedure (which is based on data-augmentation using the mixture indicators
qi.7 as auxiliary variables — see section 4.3). For comparison purpose, the coefficients of the
filter used for simulating the data are displayed at the front of each diagram (points indicated
by circles).

0.5
0.4
0.3
0.2
0.1

-0.1
-0.2

-0.3

100

200

300

400

500
iterations 1

4 5
filter coeff.

Figure 7: Estimates of the filter coefficients using single component independent sampler (Sec.
4.2) with 30 sampler cycles per SAEM iteration.

With the single site sampling technique (Fig. 5), the estimates converge more slowly and
there are clear indications that the SAEM algorithm is indeed still far from having converged
after 500 iterations (this is particularly obvious for taps 1 and 3). On the other hand, on Fig.
6, the estimates obtained with the block Gibbs sampling technique stabilize very quickly: After
the first 100 iterations (which correspond to the initial burn in period) only slight adjustments
are visible which is in contrast with the slow drifts observed for some taps on Fig. 5. This
significant difference in the efficiency of the simulation samplers based on single site sampling
and block sampling has been observed for many applications involving similar state space models
[17], [8], [53]. Available results suggest that the block sampling approach significantly reduces
the correlation between subsequent simulations compared to the single site update strategy and
thus improve the mixing properties of the simulation chain. This point is illustrated on figure
7 where the single site update strategy is used with 30 complete simulation cycles per SAEM
iteration: When allowed to run for larger numbers of simulation steps, the simpler approach
does yield results which are quite comparable to that of the block sampling scheme of Fig. 6.

Without getting into very detailed argument about the respective computation load and
memory requirement associated with the two sampling options, it is clear that the computation
time needed for running a single cycle of the block sampling approach is slightly more than for
a cycle of the single site update but certainly less than what is needed for 10 complete cycles of
the single site update. In practise, the choice of the simulation component should thus take into
account the possibility or not to obtain a Gaussian mixture representation for the source (and
noise) signal, which is a requirement for using the more sophisticated sampling approaches of
sections 4.3-4.4 (see [10], [36] for examples of the use of “approximate” mixture representations).
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6 Further topics

As a conclusion, we would like to point out several directions in which the techniques presented
in this paper could be extended.

The assumption that the noise is Gaussian may be unrealistic in some applications (in an
impulsive noise environment, for instance). This assumption can be relaxed, the only strict re-
quirement being that the complete data-likelihood still belongs to the curved exponential family.
The most direct extension consists in using a Gaussian mixture model for the noise pdf [29], [23].
In this case, all the simulation techniques described in section 4 can be used since the model still
is Gaussian conditionally to the source and noise mixture indicators (which corresponds to the
most general setting used in [8], [17] or [9]). Mixture of more general exponential distributions
can also be considered. Note however that in this case, one has to resort to the systematic sweep
Metropolis-Hasting strategy (section 4.2).

As another possible extension, one may consider a general ARMA model instead of the MA
model. Such an extension is straightforward when the underlying ARMA model has a Markovian
representation similar to that given by egs. (27)-(28). Extension to non-causal AR and ARMA
models is still an open problem (see Rosenblatt [59] and the references therein).

Finally, as mentioned in the introduction, the techniques presented therein are closely related
to the so-called fully Bayesian estimation. In this approach, a prior (possibly non-informative)
pdf is selected for the model parameter and posterior mean of the parameter pdf is used as
a point estimator. Several fully Bayesian blind deconvolution methods are presented in [29],
[23], [1], [15], [14]. The potential advantage of this approach lies in the fact that it is, at least
theoretically, insensitive to the initialization. These methods are however computationally more
demanding because they need to explore the full posterior distribution of the parameters and
not just only the neighborhood of a maximum of the likelihood function. Comparison of the
approach presented in this paper with fully Bayesian estimation, especially for moderate sample
sizes, is thus an interesting and important question.
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